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ABSTRACT 

 

DATA-DRIVEN MODELING USING DEEP NEURAL NETWORKS FOR 

POWER SYSTEMS DEMAND AND LOCATIONAL MARGINAL PRICE 

FORECASTING 

 

 

 

Jimu Honest 

Master of Science, Electrical and Electronics Engineering Program 

Supervisor: Prof. Dr. Murat Fahrioğlu 

 

 

September 2022, 121 pages 

 

 

Forecasting electricity demand and locational marginal prices (LMPs) have become 

critical components for power system security and management. Electricity Demand 

Forecasting (EDF) aids the utility in maximizing the use of power-generation plants 

and scheduling them for both reliability and cost-effectiveness. In this thesis, a novel 

Deep Neural Network Long Short-Term Memory (DNN-LSTM) forecasting model 

is suggested to improve accuracy and robustness for predicting hourly day ahead 

power system load and LMPs in two distinct markets, North Pool (NP), and New 

England-ISO (NE-ISO). Historical load, weather, statistical features derived from 

historical data, and system outage information (known as Line Outage Distribution 

Factors (LODFs)) will be used as input features in the proposed model. Two distinct 

demand-forecasting models will be modelled using two case studies that present 

different market patterns from different geographical locations. The deep neural 

network model will be compared with the state-of-the-art Lasso Estimated 

Autoregressive (LEAR) model using a variety of performance metrics, including 

Symmetric Mean Average Percentage Error (sMAPE), Root Mean Square Error 

(RMSE), Mean Average Percentage Error (MAPE), Relative Mean Average Error 





 

 
 
 

(rMAE), Mean Average Error (MAE). The results acquired from the two 

experimental case studies on the markets, revealed that the proposed DNN model 

showed significant improvement in hourly demand and LMP forecasts and therefore 

outperformed contemporary statistical forecasting techniques in accuracy, 

computational time, and reliability. 

Keywords: Deep Neural Networks, Electricity Load Forecasting, Locational 

Marginal Price Forecasting, Line Outage Distribution Factors (LODFs)  
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ÖZ 

 

GÜÇ SİSTEMLERİ TALEBİ VE YEREL MARJİNAL FİYAT TAHMİNİ 

İÇİN DERİN SİNİR AĞLARI KULLANARAK VERİ DAYALI 

MODELLEME 

 

 

 

Jimu Honest 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Programı  

Tez Yöneticisi: Prof. Dr. Murat Fahrioğlu 

 

 

Eylül 2022, 121 Syafa 

 

Elektrik talebini ve yerel marjinal fiyatları (LMPs) tahmin etmek, güç sistemi 

güvenliği ve yönetimi için kritik bileşenler haline geldi. Elektrik Talebi Tahmini 

(EDF), elektrik üretim tesislerinin kullanımını en üst düzeye çıkarmada ve bunları 

hem güvenilirlik hem de maliyet etkinliği için programlamada yardımcı olur. Bu 

tezde, Kuzey Havuzu (NP) ve Kuzey Havuzu (NP) ve New England-ISO (NE-ISO). 

Tarihsel yük, hava durumu, geçmiş verilerden türetilen istatistiksel özellikler ve 

sistem kesintisi bilgileri (Hat Kesintisi Dağıtım Faktörleri (LODFs) olarak bilinir) 

önerilen modelde girdi özellikleri olarak kullanılacaktır. İki farklı talep tahmin 

modeli, farklı coğrafi konumlardan farklı pazar kalıpları sunan iki vaka çalışması 

kullanılarak karşılaştırılacaktır. Derin sinir ağı modeli, Simetrik Ortalama Ortalama 

Yüzde Hatası (sMAPE), Ortalama Kare Hatası (RMSE), Ortalama Ortalama Hatası 

(RMSE) dahil olmak üzere çeşitli performans ölçümleri kullanılarak son teknoloji 

Kement Tahmini Otoregresif (LEAR) modeliyle karşılaştırılacaktır. Ortalama Yüzde 

Hatası (MAPE), Göreli Ortalama Ortalama Hata (rMAE), Ortalama Ortalama Hata 

(MAE). Piyasalardaki iki deneysel vaka çalışmasından elde edilen sonuçlar, önerilen 

DNN modelinin saatlik talep ve LMP tahminlerinde önemli bir gelişme gösterdiğini 
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ve bu nedenle doğruluk, hesaplama süresi ve güvenilirlik açısından çağdaş 

istatistiksel tahmin tekniklerinden daha iyi performans gösterdiğini ortaya koydu. 

Anahtar Kelimeler: Derin sinir ağları, Elektrik Yük Tahmini, Lokal Marjinal Fiyat 

Tahmini, Hat Kesintisi Dağıtım Faktörleri (LODF'ler
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CHAPTER 1 

1 INTRODUCTION 

 

Electricity demand management and planning has always been a difficult task for all 

power system utilities in all countries today, regardless of their economic status. The 

greatest stumbling block to economic expansion is energy unavailability, which is 

always in short supply due to limited or inadequate resources. The aim to reduce 

greenhouse gas and achieve green energy goals set by governing bodies has 

increased the integration of renewable energies to the power network. However, the 

integration of Renewable Energy (RE) sources has brought about grid instability due 

to their intermittent nature. As a result, there is always a need to establish approaches 

that can accurately anticipate electricity demand and locational marginal prices 

(LMPs) and allow for appropriate planning and in worst case scenarios, utility 

scheduling for load shedding. Very short term, short term, mid-term, and long-term 

load forecasting are the four types of load forecasting, with load forecast ranging 

from a few seconds to two decades [1]. The proper running of electric utilities 

necessitates the forecasting of load demand and LPMs on a short-, medium-, and 

long-term basis. 

 

Electricity Demand Forecasts (EDFs) and electricity price forecasting (EPFs) 

techniques are really important for investment planning, having the upper hand on 

proper scheduling activities of generation capacity, power systems operations and 

maintenance, fuel purchasing as well as security assessments [2]. In general, the 

majority of forecasting approaches in the current literature are based on expert 

systems, regressive analysis, grey box systems, exponential smoothing, time series, 

neural network modeling, and other types of mathematical analysis [3], [4], [5], [6], 

[7], [8], [9]. In other literatures, many state-of-the-art load forecasting models [10]–

[12] have been proposed with the goal to improve forecasting accuracy. In certain 
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circumstances, researchers have employed a combination of approaches to create 

their own EDF and EPF hybrid models. For instance, in [13] a fuzzy linear regression 

technique was utilized to anticipate weekend power demand, whereas a conventional 

exponential smoothing approach was employed to forecast midweek loads. For the 

forecasting function, traditional econometric approaches build functional 

correlations between weather variables and current load demand, often assuming a 

linear relationship. However, because of nonlinear correlations of the load demand 

and the electricity prices, as pointed out in [14], the econometric approach may not 

adequately provide accurate results. As a result, an adaptive load forecasting 

technique is required [15]. Table 1. shows the time-horizon perspective of demand-

forecasting and its application areas on short-term forecasting ranging from 

milliseconds to a week, medium-term from one week to a year, and long-term from 

one year to a decade. 

 

Table 1. The forecasting mechanisms' implementation based on time spans. 

Time span Scope of applicability Comments 

Milliseconds to seconds Assessment of a dynamic 

power system 

 

One min to one week 

 

Unit commitment 

analysis 

Optimal power flow 

(OPF) analysis and 

economic load dispatch 

(ELD)  

Management of 

automated generation 

 

One week to one year Maintenance scheduling  

One year – ten years Power System Planning 

(PSP) 

Generation planning, 

network planning, and 

load forecasting are all 

included. PSP's basic 

structure is depicted in 

Figure 1. 
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The demand for electricity is typically thought to be a result of weather parameters 

and human societal activities. In retrospective to contemporary econometric 

approaches, there is an assumption that there is a linear relationship between weather 

parameters and electricity load demand when it comes to forecasting. Figure 1 

illustrates a basic Power Systems Planning (PSP) structure from the generation 

aspect, transmission, and distribution up to energy planning and policies. 

 

Figure 1.  Power systems planning (PSP) basic structure. 

 

With the increased renewable energies integration to the power grid the overall 

stability of the power system has become even more erratic in nature as a result of 

the intermittent nature of RE sources and the irregular essence of electrical power 

demand. Therefore, unexpected increase in power demand can have massive 

instability or blackout impacts to the overall grid if forecasting techniques over 

estimate or under estimate future load demands. The general concept of supply and 

demand can be used here as a tip of the iceberg, but the overall aspect has severe 

consequences if generation doesn’t met demand vice versa. Generation companies, 

transmission systems operators, retailers and all the markets players are investing in 

load demand LMPs forecasting techniques, which has been a focal topic of research 
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in the energy sector in order to address the issues outlined above. If forecasting 

approaches employed are accurate and robust enough, the deviations of supply and 

demand will definitely be alleviated, gains in economic profits can be achieved and 

the overall grid can operate in more favorable conditions.  

 

The main goal of this thesis is to apply a deep learning (DL) technique to reduce the 

gap on the real and forecasted margins and achieve a more effective and accurate 

model for hourly day ahead electricity load demand and locational marginal prices 

(LMPs) in the Nord Pool (NP) and New England ISO (NE-ISO) electricity markets 

over various time periods. A Deep Long Short-Term Memory Neural Network 

(DNN-LSTM) was developed, along with a state-of-the-art LEAR model that served 

as a baseline and comparative model to the proposed approach. The application of 

modern methodologies to the forecasting techniques, as well as the search for the 

optimal parameters, are the foundations of this study. 

 

1.1 PROBLEM AND JUSTIFICATION 

 

A highly accurate forecasting approach is a crucial contributor for planning, as stated 

in the abstract, because of the intermittency of renewable energies, their introduction 

and integration into existing power systems has created uncertainty, necessitating the 

development of a more precise forecasting technique allowing appropriate and 

meticulous planning. Therefore, newer machine learning (ML) approaches are 

becoming more popular as power consumption patterns change, there is a growing 

desire to build efficient and adaptive methods that can be applied to different sets of 

data or markets and still perform and achieve minimal error margins. 

Since energy forecasting techniques can be classified in different timeframes and 

considering two unique markets, Nord Pool and New England ISO, this thesis 

concentrates predominantly on predicting the short-term, hourly electricity demand 
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and the hourly LPMs, utilizing datasets with a projection window of one day to a 

week with hourly phases amounting to 168 hours. Ultimately, reducing unit 

commitment, alleviates production-transmission costs for the power system 

therefore leading to efficient dispatch of popular contemporary energy sources, i.e., 

natural gas, RE and thermal power plants. In a nutshell, improved forecasting 

accuracy will also result in a substantial decrease in the operating expenses related 

to unit commitment and efficient dispatch of popular conventional energy sources 

i.e., hydro and thermal power plants will be much more attainable. 
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CHAPTER 2 

2 LITERATURE REVIEW 

 

Electrical load demand and locational marginal price forecasts are vital for 

efficient load scheduling, demand management, and contingency planning on 

power systems. Short-term forecasts, ranging from a few seconds to an hour or 

even days do have significant contributions to the daily operation of the overall 

power system. The increasing RE mix in the overall power grid and their 

intermittence downside issues to the grid requires system operators to push for 

even more accurate and reliable forecasting approaches. The reasoning behind 

the claims is that base generator setups usually take hours or days to get them 

online, and it is insanely expensive to keep large energy stocks in order to meet 

larger energy demand imbalances. Modern power systems have really made the 

load demand and LMPs forecasting an interesting work of art, because during 

past years, generation, transmission and distribution companies and other market 

players used to manage the demand imbalances by providing a higher capacity 

which was affecting the companies financially if the demand was over or under 

estimated.  

 

However, the electricity market deregulation and the introduction of other 

independent system operators, have brought a greater share of shareholder and 

consumer participation. These changes have developed the electricity market 

from a physical risk of adequate capacity to a financial risk of exorbitant 

electricity prices, therefore the need to have accurate forecasting techniques is of 

much interest since any slight improvement in forecasting accuracy now leads to 

immense profits [16]. Deregulation has also made the electricity market to be 

more competitive and profit oriented. In the literature, there have been various 

attempts at short-term forecasting using numerous computational intelligence 
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and statistical approaches. These models were applied to multivariate models 

which apply the use of exogenous variables as shown in [17] such as weather-

related data (wind speed, temperature, humidity for example), economic (fuel 

prices), and social factors (household energy usage) or univariate models in 

which the load is a function of previous load data and previous LMPs and they 

usually forecasted using time series approaches. In this instance [18] and [19] 

states that there is a linear relationship between the weather variables and the 

electricity demand, and it’s one of the most factor considered when forecasting 

short-term demand and LMPs. 

 

2.1 Electricity energy models 

 

To have a clear and better understanding and also have the concepts in a simple 

analogy, the principles of the prediction models will be elaborated together with the 

variables mentioned in the section above and their functions. LDF and LPF 

approaches can be classified into multivariate and univariate models as well static 

and dynamic models, and these topics will be explored in depth in the coming 

sections. These classifications have and are still being utilized by researchers in 

literature on Machine Learning (ML) models, deep machine learning (DML) and 

hybrid models to improve accuracy and stability of forecasting models [20]. 

 

2.1.1 Multivariate and univariate models 

 

To have a better understanding of the terminologies, this thesis will explain their 

applications in depth from the literature in the coming sections. The terms can be 

defined as the absolute ability of models to depend on present variables, be it for a 

single variable (univariate) or on a multivariate model (two or more variables) [21]. 
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Practically, models can be created with one or more variable depending on the 

objectives of the forecasting model, thus, geographical location and the intuition of 

the researcher. Below are tabulated differences of multivariate and univariate model 

approaches.  

Table 2. Multivariate and univariate model differences 

Multivariate Univariate 

Multiple variables Single variable 

Analysis - Longer time Analysis - Short time 

Purpose - Explain Purpose - Describe 

Cause and relationship – Yes Cause and relationship - No 

Tables and relationship illustrations Frequency distribution illustrations 

Uses correlations Uses dispersion methods e.g., range and 

variance 

Results can be shown as contingent 

tables 

Results can be shown as charts, bar 

graphs etc. 

 

2.1.2 Dynamic and Static models 

 

Electricity demand and price forecasting models often include static or dynamic 

models, which enables the learning and testing phases. The process of feeding a 

machine learning model or any kind of model with previously obtained data in order 

to develop functions that characterize the variation in the data is known as the 

learning phase of the model. 

 

The data that acts as the input for a model can either be one variable (univariate), in 

which case the model will attempt to create one function that suits the variable's 

changes, or multiple variables (multivariate), in which case the model would be more 

complex and take longer to create multiple functions in order to produce accurate 

trends. There is no distinction between static and dynamic models during this 

training phase. After completing the learning phase, the testing phase begins, during 
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which the model's generated algorithm will be examined for accuracy and reliability. 

During the testing phase, the distinction between static and dynamic models becomes 

apparent. 

 

 

Figure 2. Combination of static and dynamic features for a multivariate 

classification.  

 

The main distinction between static and dynamic system models is that, whereas a 

dynamic model refers to the system's runtime model, and a static model is the 

system's model outside of runtime. Another distinction is the differential equations 

used in dynamic models, which are conspicuously absent in static models. As the 

names implies, dynamic models are constantly evolving with respect to time, 

whereas the counterpart static models, are in a steady state or equilibrium over time. 

 

Dynamic models depict the behavior of the static system components, whereas static 

models are more structural than behavioral. Static modeling, which helps to represent 

the system's static components, comprises class diagrams and object diagrams. Since 

static modeling provides a picture of a system independent of time, it is more rigid 

than dynamic modeling. Static modeling refers to an object that is constant or 

unchanged in real time, however dynamic models have the capacity to adapt since 

they display attributes of what a model can achieve with a wide range of potential 
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future outcomes. An example of a dynamic models involves a combination of 

differential and algebraic equations as shown below. 

 

dx1(t)

dt
= f1(u1(t), u2(t), … um(t),   x1(t), x2(t), … xn(t)) (2.1) 

  

dx2(t)

dt
= f2(u1(t), u2(t),… um(t),   x1(t), x2(t),… xn(t)) (2.2) 

  

dxn(t)

dt
= fn(u1(t), u2(t),… um(t),   x1(t), x2(t),… xn(t)) (2.3) 

 

y1(t) = g1(u1(t), u2(t),… um(t),   x1(t), x2(t),… xn(t)) (2.4) 

  

y2(t) = g1(u1(t), u2(t),… um(t),   x1(t), x2(t),… xn(t)) (2.5) 

 

⋮ 

 

yk(t) = g1(u1(t), u2(t), … um(t),   x1(t), x2(t),… xn(t)) (2.6) 

Variables of the equations are elaborated below. 

• Where; Ui are the input variables, 

• yi are the output variables, 

• Xi are the state variables that are independent, 

• yi(t) are output variables that are related to ‘g’ functions 

 

The defining features of a dynamic model is different to the static counterpart 

because it maintains a memory of combinations of the relative inputs, outputs, and 

internal variables. 
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Like what we mentioned above in respect to static models about it not having internal 

memory of either output variables, previously applied variables, and internal 

variables. Below is canonical example of a static model and the algebraic equations. 

  

y1 = f1(u1, u2, … un, ) (2.7) 

  

y2 = f2(u1, u2, … un, ) (2.8) 

⋮  

ym = fm(u1, u2, … un, ) (2.9) 

 

The variables of the equations are described below, where. 

• yi is the output that depends on function fi of the inputs ui respectively.  

To efficiently run such a model, the model designer should set the parameters of the 

equations and provide the values for the inputs that are required and then evaluate 

the model.  

 

2.2 INPUT DATA  

 

In today’s modern markets, various countries have active deregulated electricity 

markets, and each of these markets may comprise of coexisting submarkets. There 

is no predetermined list of inputs that can be defined to produce an effective energy 

model due to the sheer diversity of market trends, market players and different 

geographical locations that is accessible. It is crucial to keep in mind that within a 

single energy market, demand forecasting organizations may use several prediction 

models that follow various operating ideologies, as stated in the preceding section, 

as well as their choice of inputs, this is also valid for suppliers and Independent 

System Operators (ISOs). Therefore, this results in the application of several models 
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that operate with various inputs provided by various entities all with the aim of 

precisely forecasting the demand for electricity and its prices.  

 

All kinds of data are always available to all entities, but because electricity demand 

is unpredictable, there is an infinite possibility that different types of externalities 

will occur. Depending on the type of externality, this causes variations in the 

reliability of each model being used. The many input kinds can be divided primarily 

into the qualitative and quantitative categories [22]. 

 

2.2.1 Qualitative Inputs 

 

Qualitative inputs are non-numerical in nature, and they are usually acquired through 

an interactive process that includes one-on-one interviews, open-ended surveys, 

methods of observation, etc. The analysis is then given in the form of categories or 

clusters of people who share the same characteristics or traits [23].  

The following statement is a suitable illustration of such data in the power market: 

As a result of the rise in greenhouse gas emissions, temperature changes are more 

drastic, and many nations regularly experience extreme heat or cold waves. There 

are broad neighborhoods in country "X" where the bulk of the people are army 

officers, and new regulations there have been issued that state a rise in the pay for 

army officers. Following the overall pay increase, these folks might tend to use more 

electricity throughout the summer or winter by using their heaters and chillers for 

longer periods of time. Since there is no prior data indicating this new consumption 

trend, this behavioral change must be accounted for in the prediction model.  
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2.2.2 Quantitative Inputs  

 

Data or variables that can be represented by numbers are considered quantitative 

inputs [24]. This makes it simple to input this kind of data into a computer model. 

For forecasting power demand, some of the often utilized quantitative data are [25]: 

● Temperature 

● Line outage information (LODFs and PTDFs) 

● Humidity 

● Past Consumption 

● Income and price elasticity  

● Number of customers • Population  

● Climate factors:  

● Dry bulb temperature  

● Dew point temperature  

● Global solar radiation  

● Humidity 

● Wind speeds  

● Energy price 

● Technology and advancements  

● Previous years’ energy’s demand  

 

Therefore, open-ended questionnaires or surveys could be used to segment the 

population into groups and somehow quantify this intangible data to improve the 

predictive model's accuracy. Table 3.2 can be used to summarize the differences 

between qualitative and quantitative inputs [26]. 
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Table 3. Shows the difference between qualitative and quantitative data 

Comparison Point Quantitative Research Qualitative Research 

Scope of research Quantity aspect (how 

much and how many) 

Quality aspect (essence 

and nature) 

Objectives and goals of 

research 

Hypothesis testing, 

forecasting, 

confirmation, and 

control 

Description, generating 

hypothesis, 

understanding and 

discovery 

Data collection Surveys, scales, 

questionnaires, and 

scales 

Interviews, researcher as 

the ground instrument 

and observations 

Findings Mostly precise, relative, 

and narrow 

Can be expanded, 

comprehensive and 

integrated 

Setting Artificial and queer Familiar and natural 

 

2.3 TREND VARIATIONS 

 

Any form of data will vary with respect to a pre-set datum (time in the instance of 

electricity demand), regardless of the type of input used or the operating principles 

of the system. These fluctuations come in a variety of forms, including seasonal 

variation, nonlinear variation, and linear variation [27]. 

 

2.3.1 Trend regression analysis (Linear variations) 

 

Also known as Trend regression analysis, they use equations to analyze the 

relationship between one or more quantitative variable in order to pick up traits and 
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forecast the variable traits based on the other. In this thesis we will have X and Y 

variables, X variables being the input variables, and Y being the output variable 

based on the input parameters. In this case X has 16-18 columns of the historical data 

ranging from, temperature, LMPs, to systems minimum, maximum, and peak 

demands etc. Trend regression analysis are there to measure the relationship between 

X and Y variables where X is always independent and Y acts as the dependent 

variable.  If we are to graphically represent the linear variations, the data will appear 

as a straight line angled diagonally upwards or downwards, therefore the trends are 

concluded to be upward or downward trends.  

Most linear trends have a simple equation that can be illustrates as follows; y =

mx + c. Where y is the variable on the y-axis and m is the slope or coefficient of the 

x variable and lastly c can be either the constant or value if no x value is present.  

 

 

Figure 2.1. Graphical representation of a linear variation 
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2.3.2 Non-Linear variation 

 

For non-linear relationships to be modelled, the forecasted variable/s (y) and the 

input or predictor variable (x) has to be transformed, this will provide the model with 

a non-linear functional form even through the model parameters. The commonly 

used transformation is the natural logarithm which is elaborated as a log-log function 

in the given form below. 

  

log log y = βo + β1 log log x + ε (2.10) 

 

In this case, lets interpret the slope β1 as electricity, simply meaning that β1 is the 

average percentage change in y, resulting from a percentage increase in (x). There is 

some instance where simply transforming the data won’t be sufficient and therefore 

a more sophisticated specification may be required. In order to have a more specific 

model. We can structure the model as below.  

  

y = f(x) + ε (2.11) 

 

In this instance f is the function for a non-linear equation, in standard terms for non-

linear regression, f(x) = β0 + β1x. This equation allows for f to be more flexible 

compared to when he’s applied to simple logarithmic or other transformations. Now 

the question bags to how we can apply these models to contemporary forecasting 

models? The application of quadratic equations or advanced high order equations 

can be achieved if input (predictor) variables are carefully specified. Using the 

piecewise approach yields similar results since, the approach can change formats 

because it responds to data variations. Such ability makes it a non-linear trend 

constructed of linear pieces and the equation below illustrates such claims.  
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x1,t = t (2.12) 

x2,t = (t − τ)+ = {  0                 t < τ (t − τ)      t ≥ τ   

 

Where τ is when the model can be readjust it’s trend at time τ therefore elaborative 

specifications can be made by replacing c = τ and x = t respectively.  

 

 

Figure 2.2. Shows a non-linear variation of load demand 
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2.4 SEASONAL VARIATIONS 

 

Seasonal trends or traits are systematic and calendar related effects. Some examples 

include the increased demand of electricity in summer periods compared to any other 

periods. Some basic seasonal variations are increase in water consumptions in 

summer due to hotter weather conditions.  

 

 

Figure 2.3. Seasonal variation of load demand over time. 

The figure above shows a seasonal variation of load demand for Connecticut, as 

shown by the figure there is a sharp increase in electricity demand in summer more 

than during other seasons and the cycle repeats yearly.  

To further understand seasonal trends, seasonal graphical representation of the NE-

ISO electricity market will be given, where the total NE-ISO hourly electricity load 
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in general is at its peak during afternoon summer months due to businesses and 

households using air-conditioning on the hotter days. Figure 2.4 illustrates these 

seasons and the peak demands during seasons. It can be seen that electricity demand 

follows a certain seasonal variation and these trends are affected by many factors but 

the most important are time of the day and temperature. 

 

 

January-April-July-October 

 

 

Figure 2.4. Average hourly electricity load during typical day by region 
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2.5 FORECASTING MODELS 

 

Due to global warming, increasing household capacity and extreme temperatures in 

different regions has increased power demand significantly over the years, therefore, 

a variety of forecasting models are being implemented to counter for uncertainties in 

power grids. The integration of renewable energy sources and the increase in 

electrical vehicles also pose a huge threat on the smooth operation of electrical power 

systems. As huge amounts of data are being made public, researchers are now 

implementing state of the art forecasting techniques and others are even going to the 

extent of combining traditional methods with current technologies to enhance 

accuracy and model robustness. The development of deep neural network 

architectures and other hybrid methods have seen huge improvements in forecasting 

accuracy, reduced computational timing and generally have helped improve 

forecasting in different regions of available data.  

Electricity load demand, on all aspects from short-term, medium, and long term is 

very much unpredictable as demand fluctuations all the time. The demand for 

electricity does not only change at the utility but also at regional or zonal level and 

major factors like economic profile of the country plays a vital role. Forecasting 

models can then be classified into three main categories; firstly, hybrid models, 

which are combinations of parametric and non-parametric models. Secondly, we 

have parametric models which consist of time series models and regression analysis 

models. Lastly, we have non-parametric models that implements the use of machine 

learning models under the artificial intelligence umbrella term.  

2.5.1 Hybrid models  

 

As seen in the literature, different models perform differently depending on the end 

goals of the researcher and the available data presented. Every model has its strengths 

and weaknesses when explored to different datasets or different market structures. 
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Hybrid models are being used because they promise to advance the existing time-

series forecasting approaches by combining high performing machine learning and 

statistical models.  

A combination of Artificial neural networks (ANNs) and Autoregressive Integrated 

Moving Average (ARIMA) were implemented in some literature to map the linear 

and non-linear trends for Jeddah’s monthly peak loads. According to [28], the 

concept of using ARIMA as the initial forecaster and then feed the results into an 

ANN model showed significant improvement in the overall accuracy of the load 

forecaster. Another hybrid model was implemented in [29] where a combination of 

Support Vector Machine (SVM), Cuckoo Search Algorithm (CSA) and ARIMA 

showed again an improved accuracy of the forecaster but in this instance ARIMA 

was used as the primary forecaster and the data was fed into an SVM model structure.  

Another author in [30] suggested the combination of ANN model and a fuzzy logic 

(FL) where FL was solely used on the training the neural network in a Short Term 

Load Forecasting (STLF) and this combination was given the name Fuzzy Logic 

Neural Network (FLNN) because of the combination model names and it showed 

improved forecasting accuracy than the conventional neural network model.  

Another author in [31] implemented further the concept introduced in [30] and 

introduced a combination of advanced and evolving fuzzy neural networks which is 

known as Evolving Fuzzy Neural Networks (EFuNN) which was used to forecast 

short-term demand of about 48 hours ahead demand forecasting. 

In a nutshell, there is quite an extensive amount of hybrid combinations available in 

the literature and to some extend they have been superior to other contemporary 

forecasting models available in the literature. With the increase of data and research 

interests there is going to be strong technological or model advancements in the area 

of hybrid electricity forecasting models. However, hybrid models don't have fixed 

set of combinations; contrary, the literature is constantly looking for fresh 

concoctions that will perform well given a specific sort of data to be employed. 
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2.5.2 Machine learning and DL models 

 

In this section, we delve in the application of non-parametric approaches and their 

implementations in the literature. Machine learning approaches are a bit complicated 

in nature compared to some of the established approaches mentioned in this thesis. 

Therefore, a throughout analysis on them can be difficult since due to their immense 

theories and computational structures. The need to deal with various datasets with 

different trends and behavioral structures in different markets, is the reason why a 

deep machine learning model was introduced in this thesis because of its capacity to 

execute feature engineering on its own. Since huge amounts of data are now available 

from electricity markets, deep learning algorithms have an advantage since they have 

the ability to scan the data and attentively search for features that correlates and then 

combine them to unleash even faster learning without being instructed to do so. 

Numerous researchers has revealed that, while automated forecasting have 

consistently proven to be highly effective and accurate than human forecasts, many 

decision makers are still skeptical around the approaches and some don’t fully 

commit in the technologies [32].  

The implementation of computational intelligence approaches has been a popular 

area of study especially in load demand and LMPs forecasting. Over the years, 

researchers have implemented these machine learning techniques, with ANN being 

one of the popular techniques under study. The ability of ANN to model non-linear 

traits of load demand data was the reason researchers turned their focus on it. The 

author in [33] was one of the very first researcher to successfully explore the abilities 

of ANN and apply it in a competitive market to predict short-term load demand. The 

results showed high forecasting accuracy on hourly day ahead demand forecasting 

in the US electricity market [33].  

The study of weather ensembles implemented by [34] showed great model stability 

with highly accurate forecasting metrics since he used a variety of weather variables 
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as input with 51 different scenarios unlike other authors who only implemented a 

single scenario when it comes to weather variables. His results were accurate for a 

ten day ahead load demand forecasting but however, his model underestimated quite 

a number of demand forecasts periods which can results in systems black outs and 

higher electricity prices. To some extend his model was considered stable and 

reliable because used weather variables unlike the cut-throat models.  

Over the years, neural networks (NNs) popularity has increased significantly and 

efforts to enhance its performance and accuracy, has become research’s primary 

concern. For instance, the author in [35] carried out a study that included Bayesian 

structure for optimal decision making in choosing which ANN model can be 

employed and its internal characteristics like the number of hidden layers, the input 

feature selection to be used in the model. In contrast with other approaches in the 

literature, other authors have made use Non-linear Autoregressive Approaches 

(NARX) for short-term load forecasting a special type of neural network with an 

optimized architecture that shortens feedback time. However, the research 

examining their performance are limited. 

Another popular approach for electricity demand and electricity price forecasting is 

the Support Vector Regression (SVR). This method has been used since the turn of 

the century, and it falls under the of support vector machines (SVM) machine 

learning category. Numerous comparisons have been made in literature, for example 

the comparison of auto regression (AR) with SVR by [36] on the Saudi Arabia and 

his contributions were involved in the pilot stages of SVR implementations in short 

term demand forecast. [37] employed all models mentioned in [36] for an extensive 

model that predicted monthly electricity demand in China and in that study the results 

showed that SVM was superior that ANN based on the evaluation of accuracy 

metrics.  

In recent literature deep machine learning models have taken the center stage as they 

are proving to have more reliable and accurate forecasting models. The three 
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common issues that has driven this thesis to strictly focus on deep learning is the lack 

of details to produce research that has been presented by some authors. The issues 

are stated below. 

i. Insufficient evidence or explanation on the exact split of data for 

training and testing[38]–[44], 

ii. The authors not being able to specify the datasets used [40], [45], 

[46], [47] and thus limiting other researchers to fully validate and 

compare research results and 

iii. Poor indication of the used inputs or features for the forecasting 

model [42], [43], [48]–[50] 

iv. Comparison of forecasting data from different markets. 

The above-mentioned issues have gone overboard for some time now and the 

introduction of deep learning (DL) techniques looks to mitigate them by solely 

employing a programming environment (e.g., python) which has powerful open 

sources libraries and hence making available the forecasting methods to be used by 

other researchers. Another path that can be used, is setting up best practices on EDF 

and EPF studies so that conclusions on similar types of models can be easily made 

and fair comparisons can be attained. 

 

2.5.3 Deep learning 

 

There have been 28 deep learning studies published in the topic of EPF over the past 

five years. The number has now been progressively rising from just one paper in 

2017 to 11 in 2018 and 16 in 2019. Notwithstanding this pattern, the majority of the 

published research have relatively restricted scope, use outdated statistical 

techniques, and have generalizable results. 
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The first DL paper to be published was [51] and it consisted of a deep learning 

network using stacked denoising autoencoders. Despite being the first, the research 

offers a more thorough review than other studies because it compares the novel 

method not just to machine learning techniques but also to two state of the art 

statistical methodologies. However, the evaluation is constrained because it only 

considers models test period with three months' worth of data. An idea for a DNN 

for modeling market integration is put forth in the second published DL article [52]. 

The drawback of this proposed model was that, it was not examined against other 

machine learning or statistical approaches, even if the method is evaluated across a 

year's worth of data. 

Four DL models—two Recurrent Neural Networks (RNNs), a Convolutional Neural 

Network (CNN), and a DNN—are proposed in the third published paper [52]. To the 

best of my research knowledge, this study is the most comprehensive one to date. A 

benchmark comprising 23 alternative models, including 7 machine learning models, 

and 15 statistical approaches were used to compare the suggested DL models in 

particular using a full year of data. Additionally, the state-of-the-art statistical 

approaches, fARX-Lasso and fARX-EN, are included in the comparison of statistical 

methodologies. Although the study demonstrates the advantages of DL algorithms, 

it is impossible to draw particularly firm conclusions because it only considers one 

market. 

The subsequent papers in 2018 primarily addressed one of three issues: comparing 

the effectiveness of various deep recurrent networks [44], [53], [54], [55], suggesting 

novel hybrid techniques based on CNNs and LSTMs [56], [57], [58], [59] or using 

conventional DNN models [54]. Regardless of the area of study, they were all more 

constrained than the first and third research [51], [52] because they did not evaluate 

the new DL models with cutting-edge statistical techniques and/or did not use 

lengthy datasets to draw firm findings. 

The primary objectives of the papers in 2019 were similar to those in 2018: 
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i.  assessing the performance of various deep recurrent networks, primarily 

LSTMs [60], [61], [62], [63], [64], [65], [66], 

ii. presenting novel hybrid deep learning techniques, typically based on 

LSTMs and CNNs [67], [68], [43], [64], [69], [70], [71], or 

iii. utilizing conventional DNN models [72], [73], [74]. 

While some studies [60], [75] attempted to compare the suggested approaches with 

already-existing DL models [52] in this context, they either neglected to re-estimate 

the benchmark models for the new case study [60] or over fit the DL benchmark 

models [75]. 

Furthermore, the author in [75], investigated a neural network that uses order book 

data, and it was then compared with DL techniques previously proposed in the 

literature, such as those in [52]. The DL approaches from the literature are taught to 

over fit the training dataset, even though the new model performs better than the 

existing DL methods. As a result, it is impossible to judge how well the new model 

performs because the comparison is misleading (thus the DL benchmark models 

would inevitably do poorly on the test dataset). The author in [69], employed and 

presented a DL hybrid forecasting technique based on normal auto encoders for 

feature selection, stacked denoising auto encoders for pre-training the dataset, and a 

crude DNN as a forecasting method. 

 

The approach was solely evaluated against the conventional machine learning 

methods, as seen in earlier publications. Additionally, the significance of each of the 

hybrid method's four modules is not examined, and the models are trained only once 

and evaluated throughout a full year by the authors without being re-calibrated with 

fresh data. Similar to this, [70] suggests a CNN hybrid model for feature selection 

that makes use of consensual information, gray correlation analysis, random forests, 

and recursive feature elimination. The algorithm is taught to classify prices rather 

than predict their scalar values, which is different from most models; nevertheless, 
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the specifics of how this process is carried out are not given. Furthermore, the 

strategy is only tested for less than a year of data and only compared against standard 

ML algorithms (the study uses one year for testing and training, but the split is not 

specified). Similar to other studies, [43] suggests a hybrid approach for micro grids 

based on CNNs and RNNs. However, unlike other studies, [43] only evaluates the 

method on a small dataset and does not compare it to cutting-edge statistical 

techniques or specify the precise split between training and test datasets. 

 

2.5.4 State of the art models 

 

It is exceedingly difficult to determine which techniques are the state-of-the-art 

because of the issues that have been mentioned when comparing EDF and EPF 

models. Nevertheless, it may be argued that the LEAR is a very accurate (if not the 

most accurate) linear model based on the experiments conducted in recent years. It 

may also be claimed that by utilizing variance stabilizing operations on the prices, 

combining forecasts from various calibration windows, and/or employing long-term 

seasonal decomposition, the accuracy of this model can be increased even further. 

The selection process is more difficult in the case of machine learning models 

because the quality of the current comparisons is low. A straightforward DNN with 

two layers appears to be among the best ML models when considering the most 

comprehensive benchmark study in terms of forecasting models in [52]. Particularly, 

whereas more intricate models, like LSTMs may be more accurate, there is currently 

no solid evidence to support this assertion. 

It is impossible to determine which hybrid model is the best in this situation. First 

off, despite the fact that numerous hybrid techniques have been put forth, neither 

they nor the LEAR or DNN models have been put side by side for comparison. 

Second, it is impossible to determine the optimal algorithms for each hybrid 

component because the majority of research do not assess the individual influence 
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of each hybrid component. For example, it is unknown which clustering, feature 

selection, or data decomposition approaches are best. 

In light of this, this thesis considered the LEAR and the DNN as the ultimate model 

candidates for the research. In instance, these two approaches are not only very 

accurate but also quite straightforward. As a result, they serve as the ideal 

comparison points for new, complicated EDF and EPF forecasting techniques.
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CHAPTER 3 

3 ELECTRICITY ECONOMICS 

 

3.1 INTRODUCTION 

 

It is essential to distinguish the various organizations and entities that are involved 

in electricity markets before we begin to analyze the markets. Presumably, we will 

go into a deeper discussion about the motivations and functions of each of these 

market players in the sections that follow. 

 

Figure 3. Two-bus power system used to illustrate a simple power systems network. 

 

Since electricity markets have been evolving due to power systems technological 

advancements, overall capacity increase, economic growth, and other individual 

factors in electricity markets. It is really difficult to find common patterns that can 

be used as conclusive evidence for different electricity markets in different countries 

or regions. For example, in some regions one company might be responsible for the 

electricity generation, transmission and distribution and also be responsible for a 

wide range of functions that are described in detail below. Not all of these entities 

will be present in every market because markets have evolved at varying paces and 

in substantially distinct patterns in each country or region. One business or 

organization might occasionally handle more than one of the responsibilities listed 

below. Figure below shows an entire power system from the generation aspect to 

loads for Northern Cyprus. 
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Figure 3.1. TRNC Transmission system network  

 

3.1.1 Vertically integrated utilities  

 

These set of utilities own the power generation plants, transmission networks and the 

distribution networks. Such an organization exercises monopolistic rights over the 

supply and transmission of power within a specific geographical area in a 

conventional regulated environment. Now that the electricity market is a more 

liberated playing ground, the generation, transmission, and distribution networks are 

largely decoupled.  
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Figure 3.2. Shows a monopolistic electricity market model  

 

The monopolistic electricity market was derived from [76]. Where sub-model (a), 

the utility is completely vertically integrated, whilst in sub-model (b), the distribution 

is handled by one or more separate companies 

 

3.1.2 Generating companies (gencos)  

 

These entities generate and sell the electrical energy to retailers or to big consumers 

and they are called (gencos). Additionally, they might offer ancillary services that 

the system operator needs in order to maintain the reliability and security of the 

electrical supply, such as regulation, systems reserve, and voltage profile 

management. An energy producer may own various generating plants or a single 

plant that are based on a diverse technological advancement. Independent power 

producers (IPPs) can be somewhat be simplified as entities or individuals that can 

generate power independently and coexist with the vertically integrated utilities.  
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Figure 3.3. Shows the purchasing agency model of electricity market based on [77]. 

(a) integrated version; (b) disintegrated version 

 

As depicted in part (a) of figure 3.3, the model shows a complete vertical structure 

where one single company own the generation, wholesale purchasing and 

distribution, while in part (b) the distribution of power is managed by different 

entities. Since IPPs are directly connected to the network, they can effectively sell 

electricity to the utility they are connected to, which in this case acts as the 

purchasing agent, as shown in part (b), as a result of being linked to the network. A 

further analysis to the model can be made in figure 3.3 (b), where the grid utility 

doesn’t own the generation, therefore it has to buy the electricity from independent 

IPPs. Additionally, the retail and distribution activities are broken down. The energy 

used by their patrons is subsequently purchased by discos from the wholesale 

purchasing organization. The issue of monopoly can be mitigated by regulating the 

rates issues by the purchasing agency since they have purchasing power over the 

generating and IPPs entities.  
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3.1.3 Distribution companies (discos)  

 

Distribution networks are owned and run by distribution companies (discos). In an 

orthodox setup, discos do possess a monopolistic power over the sale of electricity 

to all the customers connected to their network. In recent times the selling of 

electricity to customers is now separated from the running, maintaining, and 

expansion of the distribution network due to regulation of power systems. Following 

that, retailers will then have to compete to be involved in the activity to sell energy. 

In some cases, these entities might be a subsidiary to a local distribution company.  

 

3.1.4 Retailers.  

 

Since the markets have approved market players, buying, and selling electricity as a 

commodity must be monitored. Since we have some consumers who do not wish or 

are not allowed to participate in the buying and selling of electricity, retailers can act 

as middle structures that purchase the commodity on the market and deliver it to the 

designated customers.  In modern regulated markets, retailers can be market players 

that necessarily don’t have to own any sort of generational, transmission and 

distribution as they have the capability to just be business oriented. A retailer's 

customer base must not be linked to the same distribution company's network. 

As this thesis is forecasting the hourly day ahead demand and price, an example was 

suggested on how the approach can assist retailers in the market. A retailer acquired 

an amount of electricity to satisfy demand after forecasting client demand for 12 

hours. Each hour's buying price is determined by a combination of contracts (short-

term, long-term bilateral, screen-based transactions, future, and forward contracts. 

The average and total energy costs purchased for each time are displayed on the 4th 

and 5th lines of the table below. When demand is at its peak, the average price tends 

to increase because entities will have to resort to much more expensive generators to 
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cater for increased demand. It is nearly impossible to not have negative and positive 

imbalances between power generated and load demand because the power system 

can never forecast such scenarios at a hundred percent rate but can design models 

that improve accuracy metrics to reduce the deviations which is what this thesis is 

also working on. 

 

 

Figure 3.4. illustrates the daily operation of a retailer. 

These imbalances are compelled to be then cleared at the spot market price displayed 

in row 8th of figure 3.4, which increases our retailer's revenue or balancing costs 

(given a scenario that the power imbalances are negative). The entire energy cost for 

each hour can be calculated by adding the balancing and contract expenses. In this 

example we will presume that the market player (retailer) has opted for a fixed charge 

tariff structure and requires all the consumers to pay a minimum fee of $38.50 per 

megawatt-hour (MWh). The amounts that accrue for each hour are displayed in the 

table's "Total Revenues" and "Profits" lines. When prices are low, our retailer 

generates an operational profit; but when prices are high, they make a loss. 
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Figure 3.5. Forecast and actual demand for Example 1 

 

 

Figure 3.6. Costs and prices cost analysis for Example 1 

 

Overall, the bottom line for these 12 hours’ electricity price reveals a $1154 deficit 

accumulated due to high electricity prices. The retailer should, therefore, try to 

counter for such occurrences and hope it’s the markets cycle, and that other days will 
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have lower average electricity purchase prices. The retailer can reduce losses and 

improve the comparatively balancing costs if he employs accurate forecasting 

techniques, which in turn will reduce the overall imbalances on the supply and 

demand curve. To demonstrate this idea, the final line of the chart displays the profits 

that would be realized if actual demand matched predicted demand and the store was 

not susceptible to spot prices. Our retailer would have generated $2896 in profit if 

this ideal projection had come true during this time. 

 

 

Figure 3.7. Costs and prices forecast analysis for example 1 

 

3.1.5 Market Operator (MO)  

 

Since short-term electrical transactions are cleared in a matter of few seconds to 

hours, a sophisticated computer system is in place to match the offers made by buyers 

and bids submitted by sellers to be cleared in real time. These computer systems or 

structures are monitored by the market operator (MO). Additionally, it handles the 

payment of bids that have been accepted and also submitted proposals, it then 
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transfers payments made by buyers into the seller’s accounts automatically only 

when the energy delivery has been triggered. The market of last resort, or the market 

where load and generation are constantly balanced, is often run by ISOs. Independent 

for-profit market operators frequently oversee markets that close ahead of actual 

time. 

 

 

 

Figure 3.8. Retail structure for a competitive electricity market model. 

 

The ideal competitive power market, where each consumer can select their supplier, 

is depicted in the Figure above. Some of the biggest consumers like mines, 

manufacturing companies, etc. do have the options to buy electricity directly from 

the wholesale market due to the low transaction expenses unlike the majority of small 

and medium-sized consumers which acquire the purchasing power from local 

distribution companies. Retail prices no longer need to be regulated once markets 

are sufficiently competitive since small consumers can switch retailers when given 

a better deal. Such a structure is quite appropriate from an economics point of view 

since market interactions determine energy prices, as we will discover in the 
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following chapter sections. However, implementing this paradigm necessitates a 

large amount of data processing, communication, and metering. 

 

3.1.6 Independent system operator (ISO) 

 

ISOs are primarily in charge of preserving the electrical system's safety and security, 

because power system networks are obliged to run smoothly to avoid contingencies 

and penalties that might come to one market participant over another if any rules are 

violated in an independent competitive environment. In comparison to MO 

mentioned in section 3.1.5 the ISO only have access to the computational and 

communication resources needed to oversee and monitor the status and operations 

of the power system. An ISO often combines the responsibilities of the market 

operator as a last resort if other market structures are inoperable. 

 

3.1.7 Transmission companies (Transco)  

 

Reactive compensation devices, lines, cables, transformers, and other transmission 

assets are owned by transmission companies (Transco). They run these machinery 

following the independent system operator's instructions. Occasionally, firms that 

also operate producing facilities have subsidiaries that are transmission companies. 

A separate transmission company (ITC) is a transmission firm that also serves as an 

independent system operator but does not own any power facilities. 

 

3.1.8 The regulator 

 

The regulatory body is in charge of guaranteeing the equitable and effective 

electricity market and grid operation. Its main purpose is to establish and adopt the 
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regulatory body governing the electricity market and looks into alleged instances of 

power abuse. The regulator also sets the price of commodities and services offered 

by market players to mitigate monopolistic behavior and improve overall 

competition. 

3.1.9 Large and Small consumers 

 

Large and small consumers play a vital role in the electricity market. Small users like 

residential areas, shops and electric vehicles sign an agreement to have a power 

connection from their local distribution entity or municipality so they can have the 

purchasing power to buy electricity at a smaller scale. When individuals have this 

option, their involvement in the power market typically only entails picking one 

retailer from a list of options. 

On the other hand, large customer like industrial companies, heavy duty mines etc., 

are directly involved in the market due to them purchasing huge quantities of energy, 

therefore usually buying direct from the generating companies. Some might provide 

the ISO with a resource, their capacity to manage their load, so the ISO can control 

the system. Large customers may occasionally be directly connected to the 

transmission system. 

 

3.2 ELECTRICITY MARKETS  

 

Since storing vast amounts of electrical energy is very costly, it therefore must be 

produced or generated concurrently with demand or consumption. Therefore, any 

electrical energy that’s traded-in is always related to specific time periods and for 

specific number of MWh to be filled. Such assumptions do vary depending on the 

nation or region where the market is located, these time frames are classified in a 

range starting from 15 minutes, 30 minutes up to an hour. Therefore, having 
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classified time slots will obviously mean that the price will vary according to time 

because commodity prices change over time due to different delivery and generation 

timings. However, the beginning of each era does not see a clean transition in 

demand, hence, to keep the system in balance, some production modifications must 

be performed much more frequently. Even if these changes result in energy trades, 

it is best to approach them as services rather than commodities. 

 

The concept put in place to trade electricity as a commodity has been the foundation 

for the growth of electricity markets. The markets behavior between various 

commodities like barrels of oil, gas, bushels of wheat to electricity significantly 

differs. Since electricity energy cannot be kept for when its needed or the process is 

costly as compared to other commodities, therefore such distinctions have significant 

impacts on the structure and regulations of the power markets. The primary 

importance is those physical systems that work considerably quicker than markets 

tightly tied to electrical energy. To reiterate the importance of power systems 

security, electricity generation and load demand should be balanced in every normal 

power system, and if the equilibrium fluctuates, the system can collapse with 

disastrous results. 

Such a failure is intolerable since it might leave an entire country or region without 

electricity for several days, and the trading system fails. In major industrialized 

nations, bringing a power grid back online after a total breakdown can take up to 24 

hours. Since a regular customer cannot purchase power directly from a single 

generating company, instead, the power produced by all generating companies is 

combined and delivered to various end users. The indistinguishability of the 

electrical energy units generated by various sources makes this pooling possible. 

Because pooling produces significant economies of scale, it is preferable to do so 

rather than summing the maximum individual needs. The most remarkable 

generation capacity must match the maximum aggregate demand. On the other hand, 
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everyone, not just the parties to a specific transaction, is impacted when a system 

where the commodity is pooled fails. 

Finally, there are regular daily and weekly cyclical variations in the demand for 

electrical energy. It is not the only item for which demand is cyclical. To provide a 

straightforward example, daily coffee consumption shows two or three firm peaks, 

followed by periods of decreasing demand. Coffee may be stored by customers 

readily in solid or liquid form; hence unique processes are not needed for trading 

coffee.  

 

The kinetic energy held in electricity-generating units is much smaller than the 

amount of energy contained in gas pipes, therefore, it would take significantly longer 

for a gas production/consumption to turn back the system on and off in the event of 

a system outage or blackout. 

 

 

Figure 3.9. Electricity market wholesale model. 

The illustration above demonstrates that no single entity is in charge of supplying 

electricity. Conversely, discos buy the electricity, and their clients use it directly 
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from generating firms. These exchanges happen in a market for wholesale electricity. 

Heavy users are frequently permitted to purchase electrical energy straight from 

producers on the wholesale market. The system is essentially centralized just in the 

commercial sector because each disco manages the local distribution network and 

makes energy purchases on behalf of the customers within its service area. 

The fact that supply and demand interact to set the wholesale price under this model 

significantly increases the competitiveness of the generating companies. However, 

the retail price of electrical energy must continue to be regulated because small 

consumers cannot switch to a different supplier if they feel the price is too high. As 

a result, the distribution firms are vulnerable to abrupt, significant rises in the cost of 

energy at the wholesale level. 

 

3.2.1 Spot market 

 

To simplify how a spot market works, we use the everyday fruit and vegetable market 

example, you notify the seller of the number of fruits you want let’s say cucumbers, 

the sellers’ hands them over to you, you check if it’s the correct product and quantity 

and the seller immediately expects the payment, then the transaction is done. The 

regulations governing these markets may initially seem to be relatively similar 

because they have centuries of tradition bearing down on them. Due to the more 

significant trade volumes and the usage of electronic trading, modernized spot 

markets for other commodities e.g., barely, coffee and oil operate in a much flexible 

way compared to an electricity spot market. The fundamentals, however, remain the 

same. The immediate nature of the spot market is advantageous. I can sell the 

available goods if a buyer shows up because I am a producer. 
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Figure 3.10. Shows an operated electricity spot market 

 

I can buy just what I need as a consumer. Unfortunately, prices in a spot market 

frequently fluctuate. The supply of items available for immediate delivery may be 

restricted, which causes the price to soar in the event of a sudden spike in demand 

(or decrease in output). Similarly, a surplus of supply or a drop in demand lowers 

prices. Spot markets also reacted to information about a commodity's upcoming 

availability. For instance, if enough purchasers have the patience to wait until a 

predicted bountiful harvest of an agricultural item hits the market, the spot price of 

that commodity could plummet. 

 

Since market players wouldn't anticipate changes in the spot price if they were 

predictable, changes in the spot price are effectively unpredictable. Both sellers and 

purchasers of a commodity experience more difficulty due to the large and 

unexpected price fluctuations. Each of them is an entrepreneur; thus, they both incur 

the risk of various dangers. 
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A harvest can be ruined by bad weather or a bug. Production may halt if a machine 

malfunctions. Employees going on a strike can hinder production and in worst cases 

terminate the transport of readymade items. The downside of being in business is the 

issue of taking risks, too much risk imperils a company's ability to survive. 

Therefore, most organizations will work to minimize their exposure to price 

concerns. For instance, a commodity producer will try to avoid selling their product 

for a meager price. A consumer also doesn't want to be forced to pay a high price for 

a necessary good. Several kinds of transactions and markets have been introduced as 

a result of this goal to minimize risk of wildly fluctuating electricity price typical in 

spot markets. The following sections provide insights and descriptions of other 

contemporary markets. 

 

3.2.2 Forward markets and contracts 

 

To better understand the concept of forward markets and contracts an example will 

be used, suppose Honest Jimu is a wheat-raising farmer, although it is only the 

beginning of summer, he is certainly sure to supply one-hundred tons of wheat upon 

harvest to food enterprise Pretty Good Breakfast. However, he takes price changes 

quite seriously therefore he would prefer to "lock in" a fair price right away and stop 

worrying about selling once the wheat is ready and probably at a loss due to a flooded 

market. Will he be able to locate someone willing to accept such a bargain? The food 

enterprise Pretty Good Breakfast is skeptical on paying a higher price for the wheat 

it uses to manufacture its famous pancake recipe, just as farmers are anxious about 

selling at a low price in case it might be cheaper in the future. If both parties agree 

on a certain fee to buy and sell the product on their stipulated terms, we can define 

that as forward contracts and basically how forward markets works.  

 

● Delivery date and payments following delivery 

● Quality and quantity of wheat to be delivered 
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● Stipulated price to be paid 

● Penalties for both parties if they fail to honor such commitments  

 

Each party begins by estimating the spot price at the delivery time as accurately as 

possible. This prediction considers past spot pricing data and any other knowledge 

the farmer and the food-processing business may have on harvest yields, long-term 

weather predictions, and demand forecasts. The estimations of both sides at any one 

time are unlikely to be drastically different because a lot of that information is readily 

accessible to the general public. Nevertheless, due to varying negotiating stances, the 

price settled upon for the contract may vary outside the best projections. Farmer 

Honest Jimu might commit to a price lower than what he anticipated the spot market 

price to be if he worries about the potential of a meager price. The premium he is 

prepared to spend to lessen his vulnerability to an unfavorable price fluctuation is 

the difference between the anticipated spot market price and the forward contract 

price. The farmer, Honest Jimu can suggest a premium price that might be slightly 

higher than the expected spot market price to counter for price increase risks from 

the food processing company. The seller can sustain some losses if the delivery spot 

price exceeds the predetermined price and can obtain huge profits if the situation is 

otherwise. The forward contract indicates a loss for the buyer and an income for the 

seller; however, if the spot price is higher than the agreed price. 

 

3.2.3 Future contracts and futures markets  

 

Owing to the growth of a secondary market where producers (generation companies) 

and consumers (loads) of the commodity (electricity) can purchase and sell 

standardized electricity market forward contracts, such players in the market can 

better manage their exposure to price swings. In such a market, companies that 

generate (produce) or consume (loads) the product i.e., electrical energy in this case 

are the only entities allowed to take part in such a market. There can be companies 
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not allowed to participate or don’t have the privilege in other markets, do prefer to 

be involved in future markets and future contracts. These companies are usually a 

set of investors that are profit oriented, in the aspect that they want to buy electricity 

and sell it at a later date for profit or sell an existing contract to buy another later at 

a cheaper price. 

 

They are known as futures contracts rather than forwards since they are not backed 

by actual delivery. Since they can create, utilize, or retain the commodities, the 

participants should adjust their stance as the delivery date draws near. 

 

We could be wondering at this point why any sane individual would want to operate 

in this manner. To keep the market substantially competitive the future prices should 

mirror or not deviate much from the expected spot price and all market players 

should be carefully informed. So, it would appear more like gambling than a wise 

business approach to purchasing low and expecting to sell high. Thus, one needs an 

edge over other investors to succeed as a trader. Being less risk-averse than other 

market players typically give you this benefit. Some companies' shareholders 

anticipate steady but typical returns. Therefore, risk aversion in an electricity market 

is really important because it avoids the business from negative exposure that brings 

huge losses if not carefully assessed. 

 

On the other hand, shareholders in businesses that speculate on commodities aspire 

for extremely high profits, but they shouldn't be shocked if they occasionally 

experience significant losses. Participants are better positioned to balance losses 

against earnings over a lengthy period of time since they do not incur additional risks 

and have substantial financial resources. Additionally, most traders don't stick to 

trading a single commodity. They further limit their risk exposure by diversifying 

into marketplaces for various entities, even though market participants usually profit 

from electricity trading, the market gains from their trades since their participation 

broaden the players' pool and this improved liquidity aids in the market's 
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determination of a commodity's price. The downside of that is, it is simpler for other 

market players to discover counterparties for their trades (i.e., generation and loads 

behavior and trends) 



 

 
 

48 
 

CHAPTER 4 

4 CONTINGENCY ANALYSIS FOR POWER SYSTEMS 

 

The aspect of reliability in power system networks has huge implications on the 

overall system operations, particularly in large, interconnected modern networks 

where severe blackouts are a huge possibility. To optimally design a power system 

network, reliability constraints, such as the economical aspect of the system should 

be taken into consideration for smooth operations. Transmission lines should always 

be available to sustain and deliver the power from the generation plants to the end 

users (loads), and there should always be equilibrium between generation and load 

demand as to mitigate cascading system outage scenarios. When no system 

components malfunction, power systems ought to function smoothly. On the basis 

of the N-1 contingency principle, power systems must also be built so that they can 

operate effectively without violating their limitations when a system component 

fails. 

4.1 CONTINGENCY ANALYSIS 

 

Electrical power systems are massive infrastructures that are susceptible to various 

malfunctions due to internal factors such as short circuits or external factors like bad 

weather i.e., typhoons, hailstorm etc. It is difficult to build a power system with 

enough security to protect against all potential failures but doing so increases power 

system security and lessens the likelihood of unplanned blackouts. Since the working 

conditions of the system are continuously changing, reliability of the power system 

should be tested periodically. The most frequent power system failures are 

interruptions in transmission lines and generators. Failures in transmission and 

distribution lines alter the bus voltages and power flows of the remaining lines 

therefore posing severe consequences on the remaining parts of the power network. 
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To counter for future system black outs and transmission line outages, line flows and 

bus voltages for every given outage scenario should be forecasted so that 

preventative and remedial measures can be taken when there are line outages. The 

operational conditions of the other generators as well as the transmission lines alter 

when a generator outage occurs in the power system. The balance between loads and 

generators is disrupted when generation units fail, which lowers the frequency of the 

power system. The remaining generators, assuming they are working within their 

maximum output restrictions, should take the remaining generated burden in order 

to restore the frequency which might lead to catastrophic outages when the 

generation does not meet the demand. Load shedding will occur to restore electricity 

system frequency if the remaining generators are unable to make up the shortfall. 

In order to avoid this such instances, all the other generators should be run at a 

capacity greater than the slack bus in the power system. This unoccupied capacity 

from the slack bus is known as spinning reserve, and it is used to make up for losses 

and imbalances that occur during operations by absorbing reactive power and 

emitting active power to and from the system. Line flows or bus voltages limits are 

susceptible to transformer outages, generator outages and transmission line failures. 

Evaluation of all failures is desired but impractical because each failure could result 

in the worst violation of the system's operation. Operators generally examine 

potential faults as frequently as possible [78], [79]. 

Outages can influence active and reactive power losses on transmission lines. As 

shown in Equations (4.1-4.2), the active and reactive power losses depend on line 

currents (𝐼𝐼). Therefore, any change in line flow will lead to a change in active and 

reactive power loss in a power system. 

Active and reactive transmission line losses are immensely influenced by the 

outages. Equations 4.1 and 4.2 illustrates the active and reactive power losses 

concept where the power losses are rather dependent with line currents (𝐼𝐼). This 
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makes the analysis a bit simpler because any slight active and reactive power loss in 

a power system will therefore alter as a result of any change in line flow. 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝑅𝑙

𝑎𝑙𝑙 𝑙𝑖𝑛𝑒𝑠 1

𝐼2
𝑙 (4.1) 

 

𝑄𝑙𝑜𝑠𝑠 = ∑ 𝑥𝑙

𝑎𝑙𝑙 𝑙𝑖𝑛𝑒𝑠 1

𝐼2
𝑙 (4.2) 

 

Where 𝑅𝑙 and 𝑥𝑙 are line l resistance and reactance. 

 

Transmission lines behave a bit different from other structures in a power systems 

network because they produce reactive power (𝑄𝑔𝑒𝑛) and consume another set of 

reactive power (𝑄𝑙) as illustrated in equations 4.2 and 4.3 respectively. These 

reactive power losses have huge negative impacts on the transmission line voltage 

levels, therefore the need control as to achieve more stable networks is essential.  

𝑄𝑔𝑒𝑛 = − ∑ (𝐵𝑐𝑎𝑝𝑙𝑉
2
𝑠𝑙 + 𝐵𝑐𝑎𝑝𝑙𝑉

2
𝑟𝑙)

𝑎𝑙𝑙 𝑙𝑖𝑛𝑒𝑠 1

 (4.3) 

 

Where the variables 𝐵𝑐𝑎𝑝𝑙, 𝑉𝑠𝑙, 𝑉𝑟𝑙 represent line susceptance, sending and receiving 

end voltages, respectively. Contingency analysis defines which transmission line 

outage or generator outage will lead to a violation in the line flows or bus voltages. 

Contingency analysis models any single outages and multiple outages to predict 

system states. The line flows and bus voltages are checked against their limits in the 

contingency analysis. The convergence speed of contingency analysis is important 

because the number of contingencies is extremely high in large power systems, and 

the power system operating condition changes constantly.  



 

 
 

51 
 

The transmission line outages or generator failure that will cause a violation in the 

line flows or bus voltages are calculated and estimated using contingency analysis. 

To have a better understanding and forecast system states, contingency analysis 

models scenarios where a system can have a single or multiple failures for a 

conclusive analysis. In this state-of-the-art analysis, the line flows and bus voltages 

are compared to their limitations to check for potential violations and system smooth 

operations. The number of contingencies in larger power systems is high due to the 

obvious reasons like size, and the operational condition of the power system is 

continually changing, therefore the convergence speed of contingency analysis, load 

demand or locational marginal price forecasting are crucial in their respective 

criteria. 

Since bus voltages are often not a major concern in other systems, contingency 

analysis utilizing a DC power flow calculates line flow more precisely and quickly 

than the AC power flow, however that’s not usually the case, other power systems 

have bus voltage issues therefore a conclusion on which analysis should be used 

comes to play. This means that in order to forecast the system states following a 

particular interruption, contingency analysis employing an AC power flow is 

necessary. It should be noted that not every interruption results in a violation of 

system restrictions, and that it is impossible to immediately complete an AC power 

flow analysis for every outage. AC power flow is both superfluous and impracticable 

for contingency analysis. 

A process known as "contingency screening" or "contingency selection" involves 

choosing the most significant eventualities employing a DC power flow, and 

therefore review the selected contingencies for specific situations using an AC power 

flow [80]. 
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4.2 POWER SYSTEM LINEAR SENSITIVITY FACTORS 

 

Power systems have employed sensitivity analysis techniques to extensively prevent 

having to recalculate the systems power flow. The line outage distribution factors 

(LODFs) and the power transfer distribution factors (PTDFs) are the metrics 

employed in these assessments for power flow in transmission networks. The term 

"PTDFs" refers to changes in line power flows brought on by a change in power 

injection at a specific bus. According to their definition, LODFs are variations in line 

power flows brought on by the disconnecting of a specific line [81]. The need for 

quick online readjustments in contemporary power systems has recently spurred 

interests in the calculation of these sensitivity factors. 

Owing to congestion of transmission lines and human operators' operational 

consciousness, cascading failures can be defined as a series of component outages 

that includes at least one triggering component outage and subsequent tripping 

component outages occurrence [82]. These have been the main problems causing the 

electrical system's reliability to deteriorate, necessitating action to reverse the power 

flow on overloaded lines. 

Electrical power is then rerouted to adjacent transmission lines when a single line 

fault or multiple line faults occur in the system. In most cases, this leads to 

undesirable operating situations when the transmission lines are being overloaded, 

or transferring power above their intended capacity, leading to cascading faults or 

entire system blackouts. The congested line should therefore be cleared of the 

additional load in order to prevent such circumstances. In order for a security analysis 

to be useful to the operators, it must be completed relatively rapidly. This is the point 

at which distribution factors like the LODFs and PTDFs must be computed. 

These distribution factors provide the system operators with quick critical solutions 

for systems optimal power flow in terms of power injected and power leaving the 

network and they are usually based on DC techniques [83]. 
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If a rapid presentation of the results is desired, the challenge of analyzing hundreds 

of potential outages becomes very challenging to address. Utilizing linear sensitivity 

factors is one of the quickest ways to provide a swift estimate of potential overloads. 

These variables, which are obtained from the DC load flow, depict the approximate 

change in line flows for changes in generation on the network configuration. Power 

Transfer Distribution Factors (PTDFs) and Line Outage Distribution Factors 

(LODFs) are the two main types of distribution factors which can be determined in 

a variety of ways. 

4.2.1 Power Transfer Distribution Factors (PTDFs) 

 

PTDFs best describe the how the active power flow when the power is transferred 

from bus i to j on a single line (line 1). Equation 4.4 shows illustrates the concept.  

𝑃𝑇𝐷𝐹𝑖,𝑗,𝑙 = 
∆𝑓𝑙
∆𝑃

 (4.4) 

where: 

i = bus where power is being injected 

j = bus where power is being drawn or taken out 

l = line index 

∆𝑓𝑙 = line l active power flow change in MW 

∆𝑃 = power transferred from bus i to bus j 

The new active power flow for each of the lines of the system can be calculated by 

using predetermined PTDFs, as shown in Equation (4.5), 

𝑓𝑙
^ = 𝑓𝑙

0 + 𝑃𝑇𝐷𝐹𝑖,𝑗,𝑙 ∆𝑃 (4.5) 

 

Where-by: 
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𝑓𝑙
^ = flow on the line after the transfer of the power from bus i to bus j 

𝑓𝑙
0 = flow before the failure 

The new flow (𝑓𝑙
^) on each line is compared against its limit (𝑓𝑙

𝑚𝑎𝑥) and the alarm is 

announced for a violation. The line flow (𝑓𝑙
^) should be checked against − 𝑓𝑙

𝑚𝑎𝑥 and 

𝑓𝑙
𝑚𝑎𝑥 because a line flow direction is not considered power flow calculation. The 

line flow may have reversed due to an outage in the system. The superposition theory 

is used in the case of simultaneous generator outages since the PTDF factors are 

linear. 

4.2.2 Line Outage Distribution Factors (LODFs) 

 

Equation (4.6) illustrates how line outage distribution factors (LODFs) compute 

the changes in line active power flow that result from line outages in a power 

system (4.6). When the line k goes out, the LODFs for the line l are shown in 

Figure 4.1. 

 

𝐿𝑂𝐷𝐹𝑙,𝑘 = 
∆𝑓𝑙

𝑓𝑘
0  (4.6) 

 

whereby: 

𝐿𝑂𝐷𝐹𝑙,𝑘 = line outage distribution factor of line l after an outage online k 

∆𝑓𝑙 = change in MW flow online l 

𝑓𝑘
0 = flow online k before outage  
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Figure 4.1 Flow change on line l due to an outage of line k 

LODFs are computed and saved in advance and depend on system parameters and 

structures. Since the pre-contingency flow of line l is known, it can be determined 

using state estimation techniques or by monitoring the power system, and the post-

contingency flow in line l can then be computed using Equation (4.7). 

𝑓𝑙
^ = 𝑓𝑙

0 + 𝐿𝑂𝐷𝐹𝑙,𝑘 𝑓𝑘
0 (4.7) 

whereby: 

𝑓𝑙
0, 𝑓𝑘

0 = flow online l and line k before outage, respectively 

𝑓𝑙
^ = flow online l when the line k fails 

The operational conditions of the power system have no influence on the PTDFs and 

LODFs. They have to do with network architecture and transmission network 

properties. In the event of a lines or generation failure, it is consequently possible to 

immediately assess the line active power flows against their limits by precalculating 

such parameters. The preceding steps are involved in the contingency analysis 

approach employing sensitivity factors: 

• Transmission line parameters calculated based on LODFs and LODFs 

• Pre-contingency operation evaluation on power systems 

• Active power line flow calculations using equation (4.5) from injection to 

load consumption (from bus a to bus b) 
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• Active power line flow calculations using equation (4.7) for remaining active 

line after system failure. 

• Design and install an alarm system to be triggered when line constraints have 

been violated.   

4.3 PTDFS AND LODFS FORMULATION 

 

4.3.1 PTDFs Formulation 

 

In power transfer distribution factors, the active power (P) is transferred from the 

sending bus (bus s), where the power was injected to the receiving bus (bus r) that’s 

the load or the other bus to a different route, as shown in Figure 4.2. Equations (4.8, 

4.9 and 4.10) demonstrates that PTDFs provides a portion of the transferred power 

flowing on a line l.  

𝑃𝑇𝐷𝐹𝑙,𝑠,𝑟 = 
∆𝑓𝑙

∆𝑃𝑠 𝑡𝑜 𝑟
   𝑓𝑙

^ = 𝑓𝑙
0 + 𝑃𝑇𝐷𝐹𝑙,𝑠,𝑟 ∆𝑃𝑠 𝑡𝑜 𝑟 (4.8) 

 

𝑃𝑇𝐷𝐹𝑙,𝑠,𝑟 = −𝑃𝑇𝐷𝐹𝑙,𝑠,𝑟  [4.9] (4.9) 

 

−1 ≤ 𝑃𝑇𝐷𝐹𝑙,𝑠,𝑟  ≤ 1 [4.10] (4.10) 
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Figure 4.2 Line flow change of line l due to a power transfer from bus r to s 

Modelling of power systems using DC techniques, it should be known that bus or 

node angles represent the system conditions. When modeling the system using DC 

power flow, the bus angles represent the system states. The voltage magnitude is 

calculated as one per unit, and the system's active power conservation determines the 

voltage angle. The voltage angle changes for a one MW power transfer from bus s 

to bus r, are explained by equation (4.11). 

∆𝜃 = [𝑋] ∆𝑃𝑠 𝑡𝑜 𝑟   

[
 
 
 
 
 
 
 
∆𝜃1

∆𝜃2…
∆𝜃𝑖…
∆𝜃𝑗
…

∆𝜃𝑛]
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
𝑋11

𝑋21…
𝑋𝑖1…
𝑋𝑗1
…

𝑋𝑛1

  

𝑋12

𝑋22…
𝑋𝑖2…
𝑋𝑗2
…

𝑋𝑛2

  

𝑋11

𝑋11…
𝑋11
⋯
𝑋11
⋯

𝑋11

  

𝑋1𝑛

𝑋2𝑛…
𝑋𝑖𝑛…
𝑋𝑗𝑛
…

𝑋𝑛𝑛]
 
 
 
 
 
 

[
 
 
 
 
 
 
 

0
0

+1(𝑠)
…

−1(𝑟)
…
0

0 ]
 
 
 
 
 
 
 

 (4.11) 

 

{
∆𝜃𝑖 = 𝑋𝑖𝑠 − 𝑋𝑖𝑟

∆𝜃𝑗 = 𝑋𝑗𝑠 − 𝑋𝑗𝑟
      (4.12) 

 

∆𝑓𝑙 = 
1

𝑥𝑙
(∆𝜃𝑖 − ∆𝜃𝑗) =  

1

𝑥𝑙
((𝑋𝑖𝑠 − 𝑋𝑖𝑟) − (𝑋𝑗𝑠 − 𝑋𝑗𝑟)) (4.13) 

 

𝑃𝑇𝐷𝐹𝑙,𝑠,𝑟 = 
1

𝑥𝑙
((𝑋𝑖𝑠 − 𝑋𝑖𝑟) − (𝑋𝑗𝑠 − 𝑋𝑗𝑟)) (4.14) 

As shown in Equation (4.14), PTDFs depend on the system parameters, and they are 

independent of the system operating condition. The reference bus is not considered 
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in Equation (4.11), so the reactance between the slack bus and the other buses should 

be considered zero.  

Equation (4.14) demonstrates that PTDFs are dependent on the system properties but 

unrelated to overall system operational state. The reactance involving the slack bus 

and the other buses should be taken to be zero since the reference bus is not 

contemplated in Equation (4.11). 

4.3.2 The formation of LODFs 

 

Whenever a line failure occurs in the system, a change in the flow of line active 

power can be identified, thus interrupting the overall steady state operation of the 

power system. Figure 4.3 illustrates how LODFs calculate the active power of line l 

in the event that line k fails [2]. 

 

Figure 4.3 Flow change on the line 1-3 and 2-3 when the line 1-2 goes offline. 
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The formulation of LODFs, is a result of PTDFs analysis. According to Figure 4.5, 

the specific line outages are simulated as a power change at one of the receiving and 

sending line [2].  

 

Fig. 4.4 Flow change on the line l when the line k out 

After injecting ∆𝑃𝑛 and ∆𝑃𝑚 into bus n and bus m, respectively, the active power 

flow in line k switches from 𝑃𝑛𝑚 to 𝑃~
𝑛𝑚,. Equation (4.15) can be used to illustrate 

and simulate line k outage scenarios. In this case bus n receives all of its injected 

power through line k. One of the safety features installed to mitigate catastrophic 

incidents was to install circuit breakers that do not allow the power to flow through 

them, while the line is open. 

∆𝑃𝑛 = 𝑃~
𝑛𝑚   𝑎𝑛𝑑  ∆𝑃𝑚 = −𝑃~

𝑛𝑚 (4.15) 

Equations (4.16-4.17) use PTDFs to determine the active power flow of line k owing 

to power injections on buses n and m. 

𝑃~
𝑛𝑚 = 𝑃𝑛𝑚 + 𝑃𝑇𝐷𝐹𝑛,𝑚,𝑘 ∆𝑃𝑛  (4.16) 

 

∆𝑃𝑛 = 𝑃~
𝑛𝑚  𝑃~

𝑛𝑚 = (
1

1 − 𝑃𝑇𝐷𝐹𝑛,𝑚,𝑘
) 𝑃𝑛𝑚 (4.17) 
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Equations (4.18-4.19) describe the power flow variations on line l caused by the 

failure of line k. 

∆𝑓𝑙 = 𝑃𝑇𝐷𝐹𝑛,𝑚,𝑙 𝑃
~

𝑛𝑚 = 𝑃𝑇𝐷𝐹𝑛,𝑚,𝑙  (
1

1 − 𝑃𝑇𝐷𝐹𝑛,𝑚,𝑘
) 𝑃𝑛𝑚 (4.18) 

The constant in equation (4.18) is equal to the LODFs of line l since it connects the 

flow change on line l to the original flow on line k. 

𝐿𝑂𝐷𝐹𝑙,𝑘 = 𝑃𝑇𝐷𝐹𝑛,𝑚,𝑙  (
1

1 − 𝑃𝑇𝐷𝐹𝑛,𝑚,𝑘
) (4.19) 

 

𝑓𝑙
^ = 𝑓𝑙

0 + 𝐿𝑂𝐷𝐹𝑙,𝑘 𝑓𝑘
0 (4.20) 

 

 

Figure 4.5 Line outage modeled as injections in sending and receiving buses 
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4.4 COMPENSATED PTDFS 

 

The compensated PTDFs are defined to consider the concurrent line outages (line 

k) and power transfer from one bus (bus s) to the other bus (bus r) on the power 

system. Equation (4.20) defines the flow on line l as a result of the line k outage. 

Equations (4.21-4.22) are used to compute the new flow of lines l and k as a result 

of the power transfer from bus s to bus r.  

𝑓𝑙
~ = 𝑓𝑙

𝑜 + 𝑃𝑇𝐷𝐹𝑠,𝑟,𝑙 ∆𝑃𝑠 𝑡𝑜 𝑟 (4.21) 

 

𝑓𝑘
~ = 𝑓𝑘

𝑜 + 𝑃𝑇𝐷𝐹𝑠,𝑟,𝑘 ∆𝑃𝑠 𝑡𝑜 𝑟 (4.22) 

Equation (4.23) represents the power flow on line l as a result of the outage on 

line k and the power transfer from bus s to bus r. Because these factors are linear, 

the superposition theory is employed. 

𝑓𝑙
^ = (𝑓𝑙

𝑜 + 𝐿𝑂𝐷𝐹𝑙,𝑘 𝑓𝑘
𝑜)

+ (𝑃𝑇𝐷𝐹𝑠,𝑟,𝑙 + 𝐿𝑂𝐷𝐹𝑙,𝑘 + 𝑃𝑇𝐷𝐹𝑠,𝑟,𝑘) ∆𝑃𝑠 𝑡𝑜 𝑟 
(4.23) 

Equation (4.24) below illustrates the compensated PTDFs: 

𝑃𝑇𝐷𝐹𝑠,𝑟,𝑙 + 𝐿𝑂𝐷𝐹𝑙,𝑘 + 𝑃𝑇𝐷𝐹𝑠,𝑟,𝑘 (4.24) 

4.4.1 Contingency selection and ranking 

 

When there is a generator outage or line outage in a functional power system, PTDFs 

and LODFs can help predict accurately the line active power flows. These variables 

disregard voltage magnitudes and the system's reactive power flow. An active power 

flow is not a sufficient signal of line flow overloads in some power systems where 
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reactive power flow has a substantial impact on the system operating condition. 

Distribution factors are ineffective in these situations for estimating line overloads, 

necessitating the deployment of an AC power flow. 

The main issues with employing an alternating current (AC) power flow analysis for 

power system contingency assessment are the rapidity of the analysis and, 

consequently, the number of contingencies that might be considered. Even though 

analyzing each blackout with an AC power flow analysis provides precise answers 

for line flow and voltage limit breaches, the process takes too long. Combining the 

various strategies can resolve the choice between the accurate and slow method, the 

AC power flow method, and the rapid and approximate method, distributions factor 

methods. The following tasks are involved in the contingency analysis approach 

using combination methods: 

• Employing distribution factors to choose the contingencies that have a high 

likelihood of producing overloads. 

• Using AC power flow simulation to evaluate the proposed contingency for a 

precise line flow or bus voltage limit infringement. 

Using sensitivity parameters, these outages are ordered in descending order 

according to performance metrics. A couple of the blackouts are assessed using an 

AC power flow to determine not only more accurately the line reactive power flows 

and bus voltages, but also the line active power flows. For contingency rankings, the 

performance indices (PI) are crucial. They should be selected such that the 

seriousness of a particular situation is properly underlined. 

Based on performance indicators, the final list of critical contingencies for the AC 

power flow study is created. It is anticipated that performance indexes will include 

all significant contingencies in this list while excluding minor ones. 

The PI can often be divided into two classes. Additionally, a good combination of 

these two groups is considered. 
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• Active power-based ranking systems considers changes in line active power flows. 

• Methods for ranking security based on reactive power or voltage that consider 

changes in bus voltage or reactive power flows.
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Chapter 5 

5 APPLIED MODELS 

 

In this chapter, the working principles, theory, and governing equations of the 

applied models will be discussed in a detailed manner. Two models are applied 

namely, LEAR and DNN-LSTM. For the sake of reproducibility, this thesis only 

considered publicly available data. In general, when looking at the day ahead 

forecasting literature, several inputs have been proposed as meaningful explanatory 

variables, e.g., temperature, gas and coal prices, grid load, available generation, or 

weather etc. 

5.1 The LEAR model 

 

The Lasso Estimated Autoregressive model, which employs L1-regularization and 

the LASSO, is a parameter-rich ARX configuration [84]. LassoX was the moniker 

given to it when it was first released by [85].The generic auto - regressive framework 

specified by Equation (2) in [86], including significant modifications, served as the 

basis for the so-called full ARX or fARX model, a parameter-rich autoregressive 

specification including exogenous variables. Although fARX incorporates 

underpinnings and has a fuller cyclical architecture, it primarily focuses on the most 

recent weeks of data and therefore does not delve too far into the past data. 

 

The author in [87] employed similar models to the LEAR in two distinct names i.e., 

24𝐿𝑎𝑠𝑠𝑜1 in [88] and 24𝑙𝑎𝑠𝑠𝑜𝐷𝑜𝑊,𝑛𝑙 in [87]. The idea was to enhance the model, 

therefore the area (or inverse) hyperbolic sine variance stabilizing transformation 

was applied to the data as part of the pre-processing steps and feature selection, 

empirically validated and advised in [87], [88] and [89]. The data is preprocessed 

with the area (or inverse) hyperbolic sine variance stabilization transformation.  



 

 
 
 

65 

𝑠𝑖𝑛−1 𝑥 =  𝑙𝑜𝑔 (𝑥 + √𝑥2 + 1) (5.1) 

 

The equation above signifies the hyperbolic sine variance stabilizing transformation 

where 𝑥 can primarily represent the normalized energy demand or LMPs depending 

on the forecasted variables by taking the in-sample median out of consideration and 

dividing it by the median absolute deviation, which is then multiplied by a factor for 

asymptotically normal consistency to the standard deviation. To further understand 

the concept visit [89] and a have a depth understanding. For clarity and simplicity 

purposes, long-term seasonal decomposition techniques were entirely left out in this 

study; in particular, even though they showed prospects of an improved LEAR 

model, this thesis decided to implement its approaches in future studies. 

 

The model is then calibrated on consistent basis as in [90], throughout the stipulated 

4 calibration windows with data ranging from 8 weeks, 12 weeks, 3 years and lastly 

4 years to further improve the overall model. Smaller periods of (8-12 weeks) we 

taken into account as well as longer periods of (3–4 years), because that approach 

seemed to demonstrate better results over the approach [90]. 

The LEAR model to forecast hourly day ahead demand 𝑑𝑒𝑑,ℎ, on hour h and day d 

can be further illustrated by:  

 

𝑑𝑒𝑑,ℎ = 𝑓(𝑑𝑒𝑑−1, 𝑑𝑒𝑑−2, 𝑑𝑒𝑑−3, 𝑑𝑒𝑑−7, 𝑥𝑑
𝑖 , 𝑥𝑑−1

𝑖 , 𝑥𝑑−7
𝑖 , 𝜃ℎ)

+ 𝜀𝑑,ℎ 
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= ∑𝜃ℎ,𝑖(𝑑𝑒𝑑−1,𝑖)

24

𝑖=1

+ ∑𝜃ℎ,24+𝑖(𝑑𝑒𝑑−2,𝑖)

24

𝑖=1

+ ∑𝜃ℎ,48+𝑖(𝑑𝑒𝑑−3,𝑖)

24

𝑖=1

+ ∑𝜃ℎ,72+𝑖(𝑑𝑒𝑑−7,𝑖)

24

𝑖=1

+ ∑𝜃ℎ,96+𝑖(𝑥𝑑,𝑖
1 )

24

𝑖=1

+ ∑𝜃ℎ,120+𝑖(𝑥𝑑,𝑖
2 )

24

𝑖=1

+ ∑𝜃ℎ,144+𝑖(𝑥𝑑−1,𝑖
1 )

24

𝑖=1

+ ∑𝜃ℎ,168+𝑖(𝑥𝑑−1,𝑖
2 )

24

𝑖=1

+ ∑𝜃ℎ,192+𝑖(𝑥𝑑−7,𝑖
1 )

24

𝑖=1

+ ∑𝜃ℎ,216+𝑖(𝑥𝑑−7,𝑖
2 )

24

𝑖=1

+ ∑𝜃ℎ,240+𝑖(𝑧𝑑,𝑖)

24

𝑖=1

+ 𝜀𝑑,ℎ 

(5.1) 

 

Where 𝜃ℎ = [𝜃ℎ,1, …… , 𝜃ℎ,247]
𝑇 are 247 LEAR parameters for a specific hour h. The 

introduction of Least Absolute Shrinkage and Selection Operator (LASSO) has made 

the majority of these parameters null characters:  

𝜃̂̂ℎ = 𝑅𝑆𝑆𝜃ℎ

𝑎𝑟𝑔𝑚𝑖𝑛
+ 𝜆‖𝜃ℎ‖1 = 𝑅𝑆𝑆𝜃ℎ

𝑎𝑟𝑔𝑚𝑖𝑛
+ 𝜆 ∑|𝜃ℎ,𝑖|

247

𝑖=1

, (5.2) 

 

𝑅𝑆𝑆 =  ∑ (𝑑𝑒𝑑,ℎ − 𝑑𝑒̂𝑑,ℎ)2
𝑁𝑑

𝑑=8
 (5.3) 

 

Where RSS is the summation of squared residuals 𝑑𝑒̂𝑑,ℎ which is the demand 

forecast, 𝑁𝑑 is the number of days in the training dataset, and 𝜆 ≥ 0 is the 

regularization of the features/ hyperparameters of LASSO. The hyperparameter that 
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controls the 𝐿1 regularization is tuned on every consistent recalibration because 

estimating with LASSO is computationally fast. In [91], ex-ante cross-validation was 

used to achieve fast computational timings for estimating LASSO. In this study case, 

a more effective hybrid strategy to carry out the optimal selection in order to further 

lower the computing cost was introduced.  

 

5.1.1 Tuned hyperparameters 

 

A hybrid approach for selecting optimal λ was suggested in this section. With 

constant calibration, an approach to estimate of the hyperparameter with the in-

sample Akaike information criterion (AIC) and the Least Angle Regression (LARS) 

was derived. The LEAR was then recalibrated using the conventional coordinate 

descent technique, utilizing the optimal result from the LARS method. 

 

This hybrid strategy is being suggested because it offers a decent trade-off between 

accuracy and computing complexity. It specifically combines the predictability on 

small calibration windows of the coordinate descent LASSO with the computational 

efficiency of LARS for ex-ante λ selection. It is crucial to recognize that to have 

effective and efficient number of methods for selection, researchers have to undergo 

intense information pre-processing and selection on a number of methods to 

conclude on a better method. The methods for effective selection involved the below 

steps. 

i. Constant recalibration of per day as minimum, using coordinate descent 

and Cross Validation (CV). 

ii. Least angle regression and cross validation approaches implemented for 

daily recalibration 
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iii. An all-inclusive approach of LARS, CV, and AIC on daily recalibration.  

The accuracy of the other two methods was poor, and the computational cost of the 

first technique was excessively high (on par with the cost of the DNN model). In 

contrast, the suggested method performed way ahead the coordinated descent 

LASSO utilizing CV, but at a fraction of the computing expense. 

 

5.2 THE DNN-LSTM MODELING  

 

The motivation behind this structure is the ability of LSTM to model chronological 

sequences and their long term-range dependencies, hence it having the edge to 

conventional RNNs, therefore the technique can learn and model sequential relations 

in the time series data as well as a regular layer that can learn relations that depend 

on non-sequential data. The neural network model applied by the authors in [52], is 

one of the most accurate deep learning models, that has several parameters as input 

features and hyper-parameters. These can be tailored and improved for each case 

study without the need of expertise knowledge in deep learning. In simple terms the 

DNN is an extension or improved version of a two-layer version of the classic 

Multilayer Perceptron (MLP) that can be reconstructed depending on the need and 

expectation of the user. To implement these models, this thesis used Keras, and other 

python libraries.   

 

5.2.1 Structure 

 

The DL technique was modelled as a deep feedforward neural network containing 

seven layers of input layers with eighteen different features, 5 hidden layers and a 

single output layer (EDF or EPF). The Adam optimizer from [92], was used with its 

hyperparameters and its input features were optimized using the tree Parzen 
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estimator as in [93], i.e. a Bayesian optimization algorithm. The simple DNN 

structure is shown in figure 5.1.  

 

 

Figure 5.1. Simple DNN model structure 

The inputs were divided between those that model sequential time data, e.g. 

historical electricity demand and those that model regular data, e.g. day of the week 

or hourly day-ahead forecasting of the system load. This division is necessary 

because LSTM requires a sequence of time series values as inputs. However, 

considering all the possible regressors for electricity price forecasting, it is clear that 

some of them do not have that property. 

 

In general, for the case of electricity load demand and prices, the distinction between 

these two types of data can be done by considering the time information represented 

in the data. Specifically, if the data represents a collection of past values, it can 

normally be modeled as time sequential data and used as an LSTM regressor. By 

contrast, if the data represents some specific property associated with the day ahead, 

i.e., it represents direct information of a future event, it cannot be modeled as a time 
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sequence. Examples of the first could be past day-ahead prices or the measured grid 

load; examples of the second could be the day-ahead forecast of the weather or 

whether tomorrow (day-ahead) is a holiday. 

  

Figure 5.2. Simple LSTM architecture structure and layout.  

Where 𝐶𝑡−1 and 𝐶𝑡 are the cell states, ℎ𝑡−1 and ℎ𝑡 are the hidden states/units 𝐶𝑡−1 

and 𝑥𝑡 are the inputs 

The inputs of the model are divided between two groups. 

• Input vector 𝑋𝐹 = [𝑥𝐹1, … , 𝑥𝐹𝑁]𝑇  ∈  ℝ𝑛 which represents the feature 

historical information. 

• A collection of {𝑥𝑠
𝑖}

𝑖=1

𝑞
 for 𝑞 input sequences, where 𝑥𝑠

𝑖 = [𝑥𝑆1
𝑖 , … , 𝑥𝑆𝑁

𝑖 ]
𝑇

∈

 ℝ𝑛 is a vector representing past information.  

Therefore, using the distinct separation, the model uses DNN to process the inputs 

𝑋𝐹 and an LSTM to process the time sequence {𝑥𝑠
𝑖}

𝑖=1

𝑞
. Then, the outputs of these 

two networks are concatenated into one vector and this vector is fed into a regular 

output layer. 
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Automatic defining the number of neurons of the model in respect to the layers by 

𝑛𝐹
𝑖  and 𝑛𝑠

𝑖  and then by 𝑧𝐹𝑖 and |𝑧𝑆𝑖, 𝑐𝑆𝑖| ⊤ the internal state of their neuron 𝑖, the 

structure of the model is shown in Fig. 5.3. 

 

Figure 5.3. DNN-LSTM network to forecast hourly day ahead parameters. 

Table 4. Optimal hyperparameters for the DNN-LSTM model 

Hyperparameter Value 

Activation Function - DNN ReLU 

Activation Function - LSTM Tanh 

Dropout Automatic Selection 

Optimizer Adam 

Estimator Tree Parzen Estimator (Bayesian 

Optimization algorithm) 

𝒏𝑫𝑵𝑵 (Number of neurons in 

DNN) 

Automatic Selection 

𝒏𝑳𝑺𝑻𝑴(Number of neurons in 

LSTM) 

Automatic Selection 
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5.2.2 Data 

 

  Despite the fact that automatic forecasting models have demonstrated the capability 

of being more accurate than human forecasters, studies have revealed that many 

decision-makers have an innate mistrust of them [32]. One way to overcome 

“algorithm aversion” is to provide the doubters with interpretability [94].  To satisfy 

such reasoning this thesis will explore an DNN-LSTM as a set candidate for deep 

learning model that has been demonstrated to be much more reliable forecasting 

technique within the neural networks scope and also giving a certain amount of 

interpretability in the machine learning field. To perform the different experiments, 

we divide the data into three sets. 

1. Training set (01.01.2013-30.12.2016): the data used for training and 

estimating the different models. 

2. Validation set (01.12.2016-30.11.2017): a year is used to select the 

optimal hyperparameters  

3. Test set (01.12.2017-30.12.2018): a year of data that us not used at any 

step during the model estimation process, is employed as the out of 

sample data to compare the models. 

For estimating the hyperparameters, the training dataset is fixed and comprises the 

two markets datasets of five and seven years prior to the testing period. The datasets 

have different range because NP doesn’t provide the data for free to the general 

public anymore, therefore data was acquired from 2013-2018. For evaluating the 

testing dataset, the DNN is recalibrated on constant basis using a calibration window 

of five years.  

 

The dataset is separated into a training and a validation datasets in all scenarios, with 

the latter serving two purposes: early stopping criteria as implemented in [95] to 

avoid overfitting and enhance hyperparameter optimization.  
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Table 5. Start and end dates for (out of sample) test dataset 

Market Test period 

NE-ISO 01.12.2017-30.12.2018 

Nord Pool 01.12.2017-30.12.2018 

 

While a training dataset is consistently 156 weeks long, the training and validation 

datasets are split up in different time frames depending on whether the validation 

dataset is used for hyperparameter/feature selection or recalibration. Steps are shown 

below: 

 

• Since the validation dataset is utilized to assist the optimization process, the 

validation dataset is chosen as the last 52 weeks to estimate the hyper-

parameters. This is therefore done to keep the training and validation datasets 

totally independent henceforth minimizing overfitting, similar to how the 

dataset is separated into training and test datasets. 

 

• In this study, the validation dataset is only used for early stopping in the 

testing phase, it is defined by randomly selecting 52 weeks from the total 208 

weeks used for training. This is done to ensure that the dataset used to 

optimize the model parameters contains current data. In the case of 

hyperparameter optimization, the validation dataset represents the most 

recent weeks of data, this helps the model to learn the recent market trends 

giving this model an edge from other conventional neural network techniques 

that uses data that is over year old. While this isn't a major issue, but still an 

issue therefore, when implementing the DNN structure, such hyperparameter 

optimization techniques should be avoided during testing to guarantee that 

the DNN captures new market effects. 
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To achieve improved model accuracy and robustness, hyperparameter and feature 

optimization for DNN model is immensely important in acquiring the most out the 

model especially in the training and testing period. Therefore, to make sure all 

procedures were employed for better results, ranges of training datasets were 

employed starting with the NP and NE-ISO market respectively. Let’s take the NE-

ISO market data for example, the data ranged from January 1st, 2013, to June 30th, 

2022, for which three quarters of the data was used for training and the remaining 

quarter up to the recent end date was used for validation. To test the DNN models 

ability for feature selection and learning data trends February 15th, 2017, was selected 

as the forecasting focal point, the available data from February 20th, 2013, up to 

February 14th, 2017, were used as testing and validation datasets. Data split for 

training and validation was classified as 70% of the weeks from the initial date were 

selected for training and the remaining 30% for validation, thus 166 and 42 weeks 

respectively. 

5.2.2.1 Data processing 

 

In order to obtain time series that are easier to forecast, the data used for the statistical 

models are processed using Box cox transformation which is a standard 

preprocessing step in the field of electricity price and demand forecasting. The 

technique includes the log-transformation as special case. For machine learning and 

deep learning models the data is respectively normalized to the intervals [0,1] and [-

1,1], that is done to ensure these two preprocessing steps help in obtaining more 

accurate models. These transformations are only applied when estimating the 

parameters, not when computing metrics or statistical significance. 
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5.3 ENSEMBLES 

 

Ensembles are forecasting models that can independently predict scenarios and also 

they can effectively integrate forecasting models from two or more different 

approaches to create a single robust and more accurate forecast. Ensemble members, 

or models that contribute to the ensemble, can be of the same kind or different types, 

and they may or may not have been trained on the same training data [96]. The 

ensemble members' predictions can be merged using statistics like the mode or mean, 

or more advanced approaches that learn how much and under what conditions to trust 

each member. 

 

 

Figure 5.4. Basic ensemble model structure.  

There are two primary reasons to utilize an ensemble over a single model, both of 

which are related: 

1. Performance aspect: When compared to a single contributing model, an 

ensemble can generate better forecasts and achieve better results. 

 

2. Robustness aspect: The spread or dispersion of the predictions and model 

performance is reduced by using an ensemble. 
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Ensemble models are used to improve the prediction performance of a single 

predictive model on a predictive modeling task [97]. In this study we offer ensembles 

of LEAR and DNNs as benchmarks of ensemble methods for the models proposed, 

in order to have benchmark predictions for evaluating ensemble strategies. The 

ensemble for the LEAR is constructed by taking the arithmetic average of forecasts 

over four calibration window lengths: eight weeks, twelve weeks, three years, and 

four years. The ensemble for the DNN is made up of the arithmetic average of four 

individual DNNs that were estimated four times using the hyperparameter/feature 

optimization technique approach. The hyperparameter optimization, in particular, is 

asymptotically deterministic, meaning that the optimal solution is found after an 

infinite number of iterations. 

Each iteration of said approach yields a different sequence of hyperparameters and 

features, meaning that it is non-deterministic for a finite number of iterations when 

using a different initial random seed. It is practically impossible to distinguish which 

of these hyperparameter or feature subsets is better because their relative 

performance on the validation dataset is essentially equivalent, despite the fact that 

each of them represents a local minimum. The other positive aspect to why this thesis 

explored the DNN technique is its extensive adaptability mechanism which allows 

different architectures and topologies to excel.



 

 
 
 

77 
 

CHAPTER 6 

6 CASE STUDIES AND EMPIRICAL DATA 

 

In this chapter we delve into the decision-making process that went into selecting the 

power markets for this thesis. Important observations and comments will also be 

made regarding the data used and the actual variables that affected it.  

 

6.1 THE MARKET SELECTION 

 

The methodology implemented when asked what’s the best choice for accurate 

results when it comes to electricity markets, be it a working vertical market or 

deregulated market are further elaborated in the sections to follow. Having looked at 

the different types of market structures this thesis determined that a competitive 

market would be best suited for the proposed models because it contains a number 

of dynamics that will contribute to better results if the model operates optimally.  

6.1.1 Forecasting techniques 

 

As previously established, applying short-term load forecasting technique came to 

play due to the need for accurate and more reliable load forecasting techniques 

therefore with an expectation that the forecast would be more accurate as the time 

domain for the prediction was very short and few to no external factors can influence 

the predictions. Due to data availability of newer data in the markets involved a 

significant conclusion was made to use the day-ahead markets as the basis for the 

short-term forecasting compared to a week or month to years.  
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6.1.2 Case study  

 

As mentioned in the previous chapters, the need to have an accurate forecasting 

technique, data to be used and the market in which the data will be acquired from 

should be at the very top for every forecaster. EDF on a short-term basis requires 

strong attention to historical data and how the electricity market operates i.e., if the 

market is regulated or still operates vertically. Two famous regulated power markets 

were selected, and data was acquired from as back as 2013-2018 for Nord Pool power 

market and 2015-2022 for New England ISO market. Nord pool data from 2018-

2022 couldn’t be attained because the market now sells the data to the public. A 

sample data for one of the markets is shown below. 

 

Figure 6. Sample data for NE-ISO market in its raw format 

Figure 6 represents data in its raw format comprising of energy levels peak hours, 

peak weighted temperature, average LMP prices, peak and min demand and system 

demand etc. The data is from June 2015- June 2022 a duration of 7 years for the NE-

ISO market. The NE-ISO dataset was picked as to illustrate the data, there was no 

specific reason for the selection. A set of columns for the forecasted output data was 

made for both the markets to show a basic comparison between the real the demand 
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and forecasted demand as well the real time Locational marginal pricing (LMP) and 

forecasted LMP.  

 

  

 

Figure 6.1. Real time and Day ahead LMP maps for NY-ISO. 

This thesis proposes a model to reduce the imbalances on hourly forecasted LMPs 

to real time LMPs and forecasted hourly load demand to real time load demand over 

a 24-hour period. The amounts of data to be fed into the system will be discussed in 

detail in the next sections. Since the model will have a test and validation data sets, 

some of the data will be left out in training so as to validate the model’s performance 

and accuracy.  

6.1.3 Input Datasets 

 

Now that we have made arguments on the output dataset i.e., validation dataset, it is 

imperative to understand and analyze how effective can we determine how input data 

can and should be acquired for the model. Usually, models are derived on qualitative 

and quantitative data depending on the architecture, time, and the set goals for the 

model. The decisions on which types of data feed the model was relatively made 
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easy since the information is already provided on the market websites, unlike in 

unrealistic situations were researchers have to conduct surveys or questionnaires to 

understand the consumers’ demand behavior in the electricity markets. It is very 

impractical to obtain data using quantitative means for such systems given their 

magnitude and the speeds at which data changes, therefore qualitative data 

approaches seem feasible.  

As noticed in literature, the majority of authors predict load demand or electricity 

price for countries which is a tad misleading given the fact that countries have 

different zones which in turn have different temperatures for different geographical 

locations. If you look at the NE-ISO which is an advanced deregulated market, they 

focus their predictions based on geographical locations and phases of the entire 

network. It is very complicated to have a forecasting model that includes different 

input datasets for temperature and average LMPs and predict the outputs of different 

locations at the same time. To overcome such a problem five zones were picked from 

NE-ISO and five cities were also picked from NP and each city has its own set of X 

variables for input and a benchmark Y data for validation. 

 

Figure 6.2. NE-ISO electricity market zones 
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Table 4. Area reference and the respective cities from the NP market  

 

 

 

Figure 6.3. Map view of the selected cities in Norway and the table above decodes 

the geographical area reference. 

Different sets of data from weather variables to systems demand can be downloaded 

from the respective websites when the area reference is decoded. Having made all 

the necessary selections for the zones and locations to be forecasted in the model, we 

delve in filtering process and data manipulation to achieve maximum and effective 

Area reference City 

NO1 Oslo 

NO2 Kristiansand 

NO3 Molde, Trondheim 

NO4 Tromso 

NO5 Bergen 
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results for the model. The goal of this thesis as mentioned earlier is to forecast the 

day ahead demand and LMPs for a 24-hour period, therefore we have 10 different 

zones from two distinct markets, and for simplicity and results justification only two 

random zones or locations from the pool will be picked.  

 

6.2 JUSTIFICATION ON MODELS  

 

This section will solely be for justification, proofing and reliability stance on the 

acquired data and the decisions underlying the choice of model to be initiated and 

the specific markets suggested. The models ability on the validation set and accuracy 

metrics will also be justified. 

6.2.1 Market deregulation 

 

Taking a look at the NE-ISO market and its data, the market is comprised of different 

types of energy sources that makes the overall chunk of the generation. The carbon 

emission goals and objectives for a greener environment has pushed generation 

companies to opt for more sustainable and cleaner energy sources. As shown in 

figure 6.4, natural gas takes the lead as a primary fuel used in generation electrical 

energy in the US followed by nuclear power and now renewables have lapsed hydro 

to be in the top three fuels in the overall ration of fuel mix from NE-ISO.  
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Figure 6.4. Overall ratio of fuel mix chart for NE-ISO as of June 2022. 

The need to integrate renewable energy sources to the power grid has huge impacts 

on the stability of the system and also on the environmental part. A huge chunk of 

the renewables available in the NE-ISO is coming from refuse 47% and wood 37% 

with solar and wind ranking 3rd and 5th having 7% and 4% impact on the overall grid 

as shown in figure 6.5.  

 

Figure 6.5. Overall ratio for renewable energy fuel mix chart for NE-ISO as of June 

2022. 

 

To make significant carbon emission reductions, it is important if market players or 

generation companies strive to implement greener energy sources but to do so 
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accurate demand forecasting techniques has to live up to the billing. Careful long-

term planning can be feasible if accurate forecasts can be made, in investment terms, 

huge amounts of money have to be poured in to build larger generating systems 

without disturbing the operation of the existing grid and that can be achieved if and 

only if there are accurate and reliable forecasting techniques, thus giving room for 

careful planning.  

 

Figure 6.6. Carbon emissions in respect to the fuels. 

 

 

Figure 6.7. Carbon emissions in respect to fuels. 

When it comes to greener energy and sustainable aspects of energy production, we 

still have a long way to go but with the right approaches and implementation of 

renewable energies into our systems we can reduce the carbon emissions immensely.  
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6.2.2 Time domain  

 

Since electricity demand and LMPs forecast are of major interests to the power 

utilities, private investors, and policymakers alike, there is also a great deal of 

importance when It comes to development professionals. As mentioned in the earlier 

sections inaccurate forecasts can have immense consequences on the economic and 

social platforms if they under or overestimate the real time demand or electricity 

price. Various problems like forced power outages (blackouts), supply shortage that 

has serious implications on economic growth and overall productivity. On the other 

hand, overestimating the demand can lead to generation capacity over-investment, 

higher electricity prices and possibly financial distress. Some authors argued that 

deep machine learning accuracy of a forecasting model is also tied to the availability 

of recent and vast amounts of data. Recent data presents current trends that might be 

present due to areal expansions or generational capacity extensions, or population 

increase in certain areas [98].  

Additionally, the amount of data for certain models depends on the purpose and 

significance of the project. When it comes to high performing models, minimizing 

imbalances on the real time demand and forecasted demand is really important, 

therefore significant amounts of data will need to be used as input variables to 

increase both the accuracy and performance. That’s why it is crucial to allocate as 

much data as possible for testing and subtract for validation [99].  

Data analysis of the Nord pool and NE-ISO markets for the fourth year (2018) and 

(2017) respectively, and the scope to narrow down the electricity demand trends 

against temperature showed that electricity demand forecasts deviations in the 

summer periods where quite larger compared to other seasons where demand was 

not at its peak. Authors in [100] and [101] discussed the impacts of  weather variables 

such a temperature to extreme and variability of electricity and gas in England, 

concluding and supporting the above statement that summer seasons has unforeseen 
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increase in electrify demand. In a nutshell, recent time series models have shifted 

their focus to summer seasons as to have a better understanding on the model’s 

forecasting accuracy since all-time electricity peak demands are usually recorded in 

summer. The author in [101] picked the year 2018 for the models application, since 

it had larger deviations on the real and forecasted demand. The larger the deviations 

the more the author managed to have a sound conclusion and apply the data trends 

in the model. The same conclusion can be made for summer seasons in the following 

figures of forecasted hourly real and day ahead demand. There is a sharp increase in 

electricity demand from June until early September 2016 in Connecticut zone and 

the cycle repeats itself until 2021. 

 

Figure 6.8. Real time and forecasted demand for 2016, Connecticut 

As we can see from the graph, a surge in load demand is visible, during summer 

periods from June to September a rise in demand can be seen due to hotter 

temperatures therefore consumers opting to use cooling systems and other 

mechanisms to keep the temperatures down.  
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Figure 6.9. Real time and forecasted demand for 2017, Connecticut 

As we can see from the graph, a surge in load demand is visible, during summer 

periods from June to September a rise in demand can be seen due to hotter 

temperatures therefore consumers opting to use cooling systems and other 

mechanisms to keep the temperatures down. We can see uneven shifts in load 

demand due to extreme temperatures. Such occurrences are the reason why we need 

accurate forecasting techniques because they are costly to the system if the utility 

fails to meet the demand.   
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Figure 6.10. Real time and forecasted demand for 2018, Connecticut 

 

Figure 6.11. Real time and forecasted demand for 2019, Connecticut 
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Figure 6.12. Real time and forecasted demand for 2020, Connecticut 

 

Figure 6.13. Real time and forecasted demand for 2021, Connecticut
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CHAPTER 7 

7 EMPIRICAL RESULTS 

 

7.1 PERFORMANCE COMPARISON FOR THE MODELS 

 

This thesis discusses the findings of the proposed models from the experiments 

carried out on the two markets and divided the results section into two parts for 

simplicity and clarity. The results parts are structured that one section contains 

results for the error metrics and the other contains results for the ensemble model 

comparison of the models employed in this thesis and lastly the graphical 

representation of the real and forecasted load demand and LMPs for the selected 

zones and cities. 

 

7.1.1 Accuracy metrics  

 

The thesis started by presenting the results of the deep neural model and LEAR 

model respectively in terms of their accuracy metrics and graphically represent their 

findings to support the argument made in the sections to follow on which metrics to 

use in EDF and EPF. In the electricity demand and price forecasting, majority of 

metrics utilized to measure the accuracy of forecasts are the (MAE), (RMSE), 

(MAPE), (MASE) as shown by the equations below, 

 

 

𝑀𝐴𝐸 =
1

24𝑁𝑑
 ∑ ∑|𝑑𝑒𝑑,ℎ − 𝑑𝑒∗

𝑑,ℎ|,

24

ℎ=1

𝑁𝑑

𝑑=1

 
(5.1) 
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𝑅𝑀𝑆𝐸 = √
1

24𝑁𝑑
 ∑ ∑(𝑑𝑒𝑑,ℎ − 𝑑𝑒∗

𝑑,ℎ)
2
,

24

ℎ=1

𝑁𝑑

𝑑=1

  (5.2) 

 

𝑀𝐴𝑃𝐸 = 
1

24𝑁𝑑
 ∑ ∑

|𝑑𝑒𝑑,ℎ − 𝑑𝑒∗
𝑑,ℎ|

𝑑𝑒𝑑,ℎ
,

24

ℎ=1

 

𝑁𝑑

𝑑=1

 (5.3) 

 

𝑀𝐴𝑆𝐸 =
1

𝑁
∑

|𝑑𝑒𝑑,ℎ − 𝑑𝑒∗
𝑑,ℎ|

1
𝑛 − 1

∑ |𝑑𝑒𝑖
𝑖𝑛 − 𝑑𝑒𝑖−1

𝑖𝑛|𝑛
𝑖=2

,

𝑁

𝑘=1

 (5.4) 

 

where, 𝑑𝑒𝑑,ℎ and 𝑑𝑒∗
𝑑,ℎ (can be altered for EDF and EPF) respectively represent the 

real and forecasted demand on an hour h and day d, 𝑑𝑒 – demand, 𝑝𝑒 – price and  𝑁𝑑 

is the number of days in the out-of-sample test period, i.e., in the test dataset.  

 

The MAE and RMSE are not immensely useful because absolute errors are difficult 

to assess between different datasets and markets. Furthermore, electricity costs and 

profits are generally directly related to power prices, therefore measures based on 

quadratic errors, such as the Root Mean Square Error (RMSE), are difficult to 

interpret and do not accurately capture the fundamental problem of most forecasting 

users. Most energy trade applications, in particular, have underlying risk, rewards, 

and costs that are linearly related to the demand and it’s forecasting mistakes. As a 

result, linear measures describe the underlying hazards of predicting errors better 

than quadratic metrics. 

 

Conversely, since MAPE values can get very big with demand values that are near 

to zero, especially when there are blackouts (independent of real absolute mistakes), 

the MAPE is frequently dominated by low-price periods and is therefore not very 

instructive. In [102], the symmetric Mean Absolute Percentage Error (sMAPE) was 

defined as: 
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𝑠𝑀𝐴𝑃𝐸 =
1

24𝑁𝑑
 ∑ ∑ 2

|𝑑𝑒𝑑,ℎ − 𝑑𝑒∗
𝑑,ℎ|

|𝑑𝑒𝑑,ℎ| + |𝑑𝑒∗
𝑑,ℎ|

,

24

ℎ=1

𝑁𝑑

𝑑=1

 (5.5) 

 

While scaled errors do indeed solve the issues of more traditional metrics, they have 

other associated problems that make them unsuitable in the context of EDF and EPF; 

I. As MASE depends on the in-sample dataset, forecasting methods with different 

calibration windows will naturally have to consider different in-sample 

datasets. As a result, the MASE of each model will be based on a different 

scaling factor and comparisons between models cannot be drawn. 

II. The same argument applies to models with and without rolling windows. The 

latter will use a different in-sample dataset at every time point while the former 

will keep the in-sample dataset constant. 

III. In ensembles of models with different calibration windows, the MASE cannot 

be defined as the calibration window of the ensemble is undefined. 

IV. Drawing comparisons across different time series is problematic as electricity 

prices are not stationary. For example, an in-sample dataset with spikes and an 

out-of-sample dataset without spikes will lead to a smaller MASE than if we 

consider the same market but with the in-sample/out-sample datasets reversed. 

 

The rMAE accuracy metric solves some of these issues, it has (as any metric based 

on percentage errors) a statistical distribution with undefined mean and infinite 

variance [103], [104]. Similar to MASE, it normalizes the error by the MAE of a 

naive forecast. However, instead of considering the in-sample dataset, the naive 

forecast is built based on the out-of-sample dataset. For day-ahead electricity prices 

of hourly frequency, rMAE is defined as: 

𝑟𝑀𝐴𝐸 =

1
24𝑁𝑑

 ∑ ∑ |𝑑𝑒𝑑,ℎ − 𝑑𝑒𝑑,ℎ|24
ℎ=1

𝑁𝑑
𝑑=1

1
24𝑁𝑑

 ∑ ∑ |𝑑𝑒𝑑,ℎ − 𝑑𝑒∗𝑛𝑎𝑖𝑣𝑒
𝑑,ℎ|24

ℎ=1
𝑁𝑑
𝑑=1

, (5.6) 
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Where the 
1

24𝑁𝑑
 factor cancels out in the numerator and the denominator. There are 

three natural choices for the naive forecasts: 

 

• 𝑑𝑒∗𝑛𝑎𝑖𝑣𝑒,1
𝑑,ℎ = 𝑑𝑒𝑑−1,ℎ , 

• 𝑑𝑒∗𝑛𝑎𝑖𝑣𝑒,2
𝑑,ℎ = 𝑑𝑒𝑑−7,ℎ , 

• 𝑑𝑒∗𝑛𝑎𝑖𝑣𝑒,3
𝑑,ℎ = {

𝑑𝑒𝑑−1,ℎ,             if d is Tue,Wed, Thur or Frid,

ded−7,h                         if d Sat, Sund, or Mond.
  

 

In the context of EPF, rMAE using de∗naive,2
d,h = ded−7,h is arguably the best 

choice for two reasons:  

i.  it is easier to compute than the one based on de∗naive,3
d,h and, unlike the 

rMAE based on denaive∗,1
d,h, it captures weekly effects, 

ii. Given a set of forecasting models, the relative ranking of the accuracy of the 

models is independent from the naive benchmark used. Hence, in the 

remainder of the article we will use rMAE to explicitly refer to the rMAE based 

on de∗naive,2
d,h. It is important to note that, similar to rMAE, one could also 

define the relative RMSE (rRMSE) by dividing the RMSE of each forecast by 

the RMSE of a naive forecast. 

Since the in-sample dataset is no longer required, utilizing a rolling window is no 

longer a concern because the out-of-sample dataset remains unchanged. Models with 

differing calibrating periods can also be assessed, and the rMAE of ensembles can 

be specified accurately. Furthermore, the challenge of establishing conclusions in 

quasi time - series data is alleviated because the metric is standardized by the MAE 

of a conventional forecast for much the same sample. rMAE should always be 

utilized to assess innovative approaches in EDF because of its superior properties. 

Whereas other metrics can be used in tandem with rMAE, it is critical to incorporate 

and implement rMAE in order to gain more equitable perceptions and evaluations. 
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7.2 INDIVIDUAL MODELS  

 

In terms of rMAE, MAE, MAPE, SMAPE, and RMSE, Table 5 compares the 

performance of the two separate models and their modifications. The LEAR model 

is shown for four distinct calibration windows that represent 182, 728, 1824, and 

2554 days, or 8 weeks, 12 weeks, 3 years, and 4 years, respectively. The four DNNs 

were also acquired by running the feature/hyperparameter optimization technique 

four times and picking the appropriate feature/hyperparameter classification out of 

each trial, as seen in the preceding section which included ensembles and 

hyperparameters. There were several discoveries formed: 

 

• The MAPE appears to be an ineffective indicator because it contradicts the other 

three linear indicators as well as the quadratic metric. While the rMAE, MAE, and 

sMAPE all concur on which model is the best in every circumstance, the MAPE 

virtually seldom complies. The German market exemplifies this unreliability: 

whereas the MAPE and sMAPE measurements are normally of similar order of 

magnitude, the MAPE in the German market is roughly ten times bigger. This effect 

can be attributed to negative and extremely closer to zero pricing in Germany, 

resulting in very large absolute percentage errors that distort the MAPE. The German 

market was utilized to substantiate the argument made on MAPE indicators but not 

included in this thesis.  

 

• It appears that the DNN models are much more precise over state of the art statistical 

LEAR model. In respect to linear metrics, a DNN is the best model across the two 

marketplaces. Furthermore, the majority of DNN models outperformed all four 

LEAR models in all the markets examined 

 

• Even though the RMSE yields significantly distinct findings, which is should be 

made to understand given that the metric is based on quadratic rather than linear 

errors. Nevertheless, it however demonstrates overall dominance of the DNN model: 
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the DNN is better in both datasets, despite the fact that it is evaluated by decreasing 

absolute errors (versus LEAR). Additionally, while the DNN appears to be poorer in 

two markets based on RMSE indicators, the RMSE indicator doesn't quite accurately 

reflect the fundamental dilemma, and it might be argued that it is not the optimal 

metric for evaluating the efficiency and the overall performance for electricity 

demand and price forecasting models. 

 

Table 7. DNN model accuracy metrics, NP market. 

 

  𝐷𝑁𝑁1 𝐷𝑁𝑁2 𝐷𝑁𝑁3 𝐷𝑁𝑁4 

 rMAE 0.324 0.401 0.303 0.344 

NP MAE 1.586 1.91 1.607 1.504 

 MAPE 5.527 6.313 5.373 5.603 

 sMAPE 4.956 5.772 4.759 5.156 

 RSME 3.263 3.648 3.249 3.149 

 

 

Table 8. LEAR model accuracy metrics, NP market. 

  𝐿𝐸𝐴𝑅182 𝐿𝐸𝐴𝑅728 𝐿𝐸𝐴𝑅1824 𝐿𝐸𝐴𝑅2554 

 rMAE 0.364 0.361 0.371 0.370 

NP MAE 1.741 1.739 1.786 1.779 

 MAPE 6.125 6.146 5.888 5.933 

 sMAPE 5.445 5.408 5.430 5.447 

 RSME 3.460 3.453 3.394 3.393 

 

Table 7 and 8 results, shows the DNN and LEAR models accuracy metrics for LMPs 

from the Nord Pool (NP) market in terms of the different metrics (rMAE, MAPE, 

MAE, RMSE, and sMAPE). To attain higher accuracy metrics, the thesis employed 

four different sets of configurations and the best-case scenarios is highlighted for a 

specific model in respect to the metric.  
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Figure 7.  LMPs accuracy metrics comparison 

 

  

  

Figure 7.1 Accuracy metrics comparison  
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To better understand the distinction on model performance, two metrics are selected 

for comparison, the rMAE and MAE, to validate that the deep learning models 

performs better than the statistical models. The figures 7 and 7.1 clearly shows the 

deep learning models are much more accurate in all the five-accuracy metrics 

employed.  

 

Table 9. DNN accuracy metrics, NE-ISO market 

 

 

 

 

 

 

 

 

Table 10. LEAR accuracy metrics, NE-ISO market 

 

 

 

 

 

 

 

 

Table 9 and 10 results, shows the DNN and LEAR models accuracy metrics for load 

demand from the New England ISO (NE-ISO) market in terms of the different 

metrics (rMAE, MAPE, MAE, RMSE, and sMAPE). To attain higher accuracy 

levels, the thesis employed four different sets of configurations and the best-case 

scenarios is highlighted in purple for a specific model in respect to the metric.  

 

  𝐷𝑁𝑁1 𝐷𝑁𝑁2 𝐷𝑁𝑁3 𝐷𝑁𝑁4 

 rMAE 0.398 0.387 0.379 0.354 

NE-ISO MAE 4.122 3.045 2.944 2.963 

 MAPE 10.21 9.78 9.182 9.334 

 sMAPE 7.52 7.21 7.274 7.013 

 RSME 4.236 4.763 3.102 3.298 

  𝐿𝐸𝐴𝑅182 𝐿𝐸𝐴𝑅728 𝐿𝐸𝐴𝑅1824 𝐿𝐸𝐴𝑅2554 

 rMAE 0.438 0.436 0.378 0.377 

NE-ISO MAE 3.477 3.467 3.098 3.095 

 MAPE 10.84 10.78 10.09 10.08 

 sMAPE 8.68 8.84 7.45 7.43 

 RSME 3.715 3.704 3.246 3.124 



 

 
 

98 
 

 

Figure 7.2.  LMPs accuracy metrics comparison, NE-ISO electricity market  

 

Figure 7.2 Shows the graphical representation on the comparison of the DNN and 

the LEAR models for New England ISO market in terms of rMAE, MAE, MAPE, 

sMAPE and RMSE. The results complement the basic principles suggested and 

analyzed in the section earlier in terms of accuracy metrics: studies in energy 

load demand forecasting must eschew MAPE and instead utilize metrics like 

sMAPE or rMAE. The preceding hypotheses are substantiated by the below claims: 

 

1. MAE would be just as solid as rMAE. Furthermore, since the errors really aren't 

absolute, there is no way to compare datasets, therefore rMAE is preferable. 

2. sMAPE is far more accurate and reliable over MAPE, and it accords with 

MAE/rMAE. However, it suffers from an undefined mean and unlimited variance. 

As a result, it's much less reliable than the proposed rMAE. 

3. MAPE is not really a reliable indicator since it prioritizes sets of data near zero. As 

a result, MAPE can produce deceptive outcomes and inaccurate findings. 

4. Although RMSE is somewhat dependable than MAPE, it does not 

entirely accurately reflect the core potential risks connected with EPF. As a 

consequence, it must never be employed to objectively assess forecasting models on 

its account. 
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Figure 7.3. Load demand accuracy metrics 

 

7.2.1 Ensembles  

 

Table 11 compares the performances of the two ensemble models with the best DNN 

and LEAR models in respect of the rMAE metric, which really is undoubtedly the 

most reliable statistic. Numerous insights can be derived from the table 7 below: 

i. In particular, for two markets and all verifiable indicators, the ensemble of 

DNNs outperforms the best individual DNN model. Similarly, for the two 

markets and dependable indicators, the ensemble of LEAR models 

outperforms the best individual LEAR model. The MAPE and RMSE 

measurements are the outliers to this criterion, although as previously 

stated, MAPE is a problematic indicator, and RMSE doesn't accurately 

depict the fundamental issue of EDF. 
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ii. Like before, the ensemble of DNNs is the most accurate model in terms of 

rMAE throughout all the electricity markets experimented, suggesting that 

DNN models are much more efficient than LEAR models. 

 

Table 11. Ensemble model accuracy metrics: New England ISO Market 

  LEAR Model DNN Model Best LEAR Best DNN 

 rMAE 0.364 0.342 0.357 0.354 

 MAE 2.013 1.862 2.095 2.075 

NE-ISO MAPE 10.045 9.159 10.079 9.325 

 sMAPE 6.985 6.345 7.538 7.012 

 RMSE 3.271 3.145 3.421 3.289 

 

Table 11 clearly shows the comparison between then ensembles of the proposed 

DNN model and the benchmark LEAR model for the New England ISO market in 

terms of the relative accuracy metrics employed (RMAE, MAE, MAPE, sMAPE 

and RMSE). The comparative analysis also involves the best-case scenario of the 

performing model in terms of MAE, and rMAE, which are the two most reliable 

metrics and all the accuracy metrics, therefore the best-case scenario for every metric 

is highlighted in purple. It can be seen that the DNN model outperformed the state-

of-the-art statical model in all accuracy metrics for the NE-ISO market case study. 
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Figure 7.4. Comparative analysis of the best ensemble case scenario 

 

In detail figure 7.4 shows the comparative analysis also involving the best ensemble 

case scenario of the performing model in terms of MAE, and rMAE, which are the 

two most reliable metrics and the best case per model.  

 

Table 12. Ensemble model accuracy metrics: Nord Pool Market 

  LEAR Model DNN Model Best LEAR Best DNN 

 rMAE 0.208 0.197 0.265 0.202 

 MAE 1.327 1.272 1.541 1.306 

NP MAPE 4.022 3.873 4.846 4.073 

 sMAPE 3.498 3.369 4.105 3.459 

 RMSE 1.851 1.808 2.153 1.849 

 

Table 12 clearly shows the comparison between then ensembles of the proposed 

DNN model and the benchmark LEAR model for the Nord Pool market in terms of 

the relative accuracy metrics employed (RMAE, MAE, MAPE, sMAPE and 

RMSE). The comparative analysis also involves the best-case scenario of the 
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performing model in terms of MAE, and rMAE, which are the two most reliable 

metrics and all the accuracy metrics, therefore the best-case scenario for every metric 

is highlighted. It can be seen that the DNN model outperformed the state-of-the-art 

statical model in all accuracy metrics for the NP and NE-ISO market case study. 

 

 

Figure 7.5. Ensemble accuracy comparison of DNN and LEAR models  

 

Figure above graphically illustrates the comparison between then ensembles of the 

proposed DNN model and the LEAR model for two markets in terms of RMAE, 

MAE, MAPE, sMAPE and RMSE. 

 

7.2.2 Computation time  

In addition to just comparing the models' prediction accuracy, it is also mandated to 

assess the computational times of these forecasting approaches, as discussed in the 

preceding section. Table 11 shows a comparative information of the 

computational time taken to estimate the models under study, i.e., the time necessary 

to recalibrate each model on regular routines. The computational time is presented 
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as a range because it is non-deterministic. These results were obtained with a 

standard i5-6920HQ laptop with a quad-core processor. 

 

Even though the LEAR model achieves significantly worse accuracy than the DNN 

model, its computational time is 30 to 100 times faster; specifically, the LEAR 

model is 50 times faster when comparing the maximum computing time of both 

approaches. 

 

Table 13. Computation time for the proposed forecasting models.  

 

MODEL TIME 

LEAR  10–25 s 

LEAR ENSEMBLE 25–45 s 

DNN 2–4 min 

DNN ENSEMBLE 5–15 min 

 

7.3 DISCUSSION AND REMARKS 

 

This thesis can conclude with some last notes on the motivations for the accuracy 

metrics used, a quick analysis of the impact of the various metrics studied, and a 

discussion of comparing new models in the coming sections and the graphical real 

and forecasted parameters for better understanding.  

7.3.1 Squared vs Absolute errors 

 

The thesis mostly explored accuracy metrics based on absolute errors throughout the 

research, that is, metrics that measure the accuracy of forecasting the distribution's 

median. One could argue that a test based on squared errors should be selected since 
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the LEAR model is estimated by reducing squared errors, which leads to relatively 

mean forecasts [105]. While there are some merits to the argument, this thesis opted 

for absolute metrics for three main reasons stated below: 

 

1. The metric for assessing accuracy must be the one that accurately suits the 

fundamental problems in EDF and EPF. Since the demand of electricity is 

continuous in the case of EDF, linear indicators are highly probable and the finest 

approach to assess the risks with forecasting errors. 

2. While the RMSE data were supplied, they are not qualitatively identical to the 

MAE/rMAE values. Due to capacity limitations, the RMSE results were hardly 

investigated in depth because absolute errors better describe the fundamental 

problem of EDF, and the results are not identical. 

3. Although the LEAR model is evaluated utilizing squared errors, this is largely due 

to the fact that the techniques for efficiently estimating the LASSO, such as 

coordinate descent, employ squared errors. The LEAR model has a computational 

advantage over the DNN as a result of this. Regularized quantile regression [106]  is 

an alternative, nevertheless it adds to the computational overhead while providing 

minimal gain in terms of MAE/rMAE accuracy. 

7.3.2 Performance of the LSTM-DNN and LEAR models 

 

The models based in deep learning proved to be more accurate and efficient and 

hence outperformed those based on conventional neural networks and statistical 

approaches, according to the detailed comparison of accuracy metrics and 

computational time. This is particularly true in the context of DL ensemble models, 

where the ensemble of DNNs produces substantially outstanding results than just 

about any other model present in the literature at the moment.  

 

While DNNs surpassed LEAR models in terms of low complexity and computational 

time, the latter remain the state-of-the-art in terms of low complexity and 
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computational time. Their performance is slightly behind to that of DNN; however, 

they have an advantage for less computation time when compared to the 

contemporary DNN model. In brief, depending on the decision time available, new 

models for electrical energy load demand forecasting and locational marginal pricing 

should be compared to LEAR models or DNNs. To be regarded more accurate than 

state-of-the-art approaches, a method must either outperform the DNN model or 

outperform LEAR while requiring equivalent or fewer computational resources. 

 

 

Figure 7.6. Hourly real and forecasted electricity price over a 24 hours’ period NP 

electricity market, Bergen, Norway. 
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Figure 7.7. Hourly comparative analysis for the real time and forecasted hourly 

demand over a 24 hours’ period NP electricity market, Bergen, Norway. 

. 

 

 

Figure 7.8. Hourly comparative analysis for the real time and forecasted hourly 

demand over a 24 hours’ period NE-ISO electricity market, Maine Zone. 
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Figure 7.9. Hourly deviations on the real time and forecasted hourly demand over a 

24 hours’ period for NE-ISO electricity market, Maine. 

 

 

Figure 7.10. Daily real time and forecasted demand for one-month period for NE-

ISO electricity market, Maine. 
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Figure 7.11. LMPs MAPE comparison 

 

The comparison for the proposed models and the contemporary models found in the 

literature were made to validate the claims that the deep learning models and the 

state-of-the-art statistical models are quite superior, and they should be he model 

benchmarks in EDF and EPF context.   All the models compared were tested in two 

different markets to have a sound conclusion on model robustness and adaptability. 
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8 CONCLUSION 

 

This thesis developed two state-of-the-art models for short time electricity demand 

and locational electricity price (LMPs) and compared them for accuracy and 

computational time. The author developed an open access also recommended that 

open access platform with complete documentation and data for enhanced model 

accuracy and stability since, thus helping future researchers to carry on from the 

existing study cases as well have state-of-the-art models for comparison. The author 

also examined various factors affecting the quality of the research, such as accuracy 

metrics and dataset size, and a conclusion resulted in suggested solutions to ensure 

that future research will be reproducible, useful, and adequate, in particular because 

the field of EDF lacks a rigorous approach to compare and evaluate new forecasting 

models.  

To further elaborate the paragraph above, EPF and EDF do evolve therefore the use 

of exclusive datasets to which other researchers have limited access is really 

important and thesis suggested an open-access anaconda notebook and dataset that 

includes five years and seven years of recent data from five distinct markets. The 

benchmark dataset's purpose is to give future researchers a similar framework so that 

novel techniques may be tested under different circumstances and effective 

comparisons can be made. The python, open-source anaconda notebook module can 

be found here and its accessible to the public [107]. 

Since contemporary techniques in EDF and EPF are frequently not evaluated with 

proven approaches, electricity markets and different zones therefore thesis compared 

one of the best statistical and deep learning techniques in two distinct markets that 

has 10 zones for extensive analysis. At the moment the toolbox only supports python 

programming language but, in the future, the author would like to support more 

languages and with the help of other scholars, and further extend the impact of the 

studies.  
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With the use of these findings, this thesis was able to demonstrate that while LEAR 

approaches are the best model for applications requiring quick decision times, deep 

neural networks outperformed them overall. Furthermore, we have demonstrated that 

ensemble model approaches frequently produce findings that are appreciably 

superior to those of their solo counterparts. Based on the results presented, it can be 

concluded that following guidelines and proper methodologies to what constitutes to 

a good forecasting model has significant implications to how the model will perform.  

In a nutshell, three most important recommendations were made from the research,  

i. Statistical testing was required to reach significant conclusions,  

ii. MAPE is an unreliable metric in electricity demand forecasting, and it 

should be avoided,  

iii. The test dataset should be at least one year long, and the availability of 

data plays a big role in the accuracy and robustness of an electricity 

forecasting model.
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